日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
5.某消費品專賣店的經營資料顯示如下:
①這種消費品的進價為每件14元;
②該店月銷售量Q(百件)與銷售價格P(元)滿足的函數關系式為Q=$\left\{\begin{array}{l}{k_1}P+{b_1},14≤P≤20\\{k_2}P+{b_2},20<P≤26\end{array}$,點(14,22),(20,10),(26,1)在函數的圖象上;
③每月需各種開支4400元.
(1)求月銷量Q(百件)與銷售價格P(元)的函數關系;
(2)當商品的價格為每件多少元時,月利潤最大?并求出最大值.

分析 (1)利用帶待定系數法即可求出函數的解析式,再根據銷售量Q(百件)與銷售價格P(元)滿足的函數關系式,即可月銷量Q(百件)與銷售價格P(元)的函數關系,
(2)設該店月利潤為L元,則由題設得L=Q(P-14)×100-100,得到函數的解析式,分段求出函數的最值,比較即可.

解答 解:(1)∵點(14,22),(20,10),(26,1)在函數的圖象上,
∴$\left\{\begin{array}{l}{14{k}_{1}+{b}_{1}=22}\\{20{k}_{1}+{b}_{1}=10}\end{array}\right.$,解得$\left\{\begin{array}{l}{{k}_{1}=-2}\\{{b}_{1}=50}\end{array}\right.$.
同理可得$\left\{\begin{array}{l}{{k}_{2}=-\frac{3}{2}}\\{{b}_{2}=40}\end{array}\right.$,
∴Q=$\left\{\begin{array}{l}{-2P+50,14≤P≤20}\\{-\frac{3}{2}P+40,20<P≤26}\end{array}\right.$,
(2)設該店月利潤為L元,則由題設得L=Q(P-14)×100-100,
由(1)得L=$\left\{\begin{array}{l}{(-2p+50)(P-14)×100-4400,14≤P≤20}\\{(-\frac{3}{2}P+40)(P-14)×100-4400,20<P≤26}\end{array}\right.$,
=$\left\{\begin{array}{l}{-200{P}^{2}+7800P-74400,14≤P≤20}\\{-150{P}^{2}+6100P-10000,20<P≤26}\end{array}\right.$,
當14≤p≤20時,Lmax=1650元,此時P=$\frac{39}{2}$元,
當20<p≤26時,Lmax=$\frac{4850}{3}$元,此時P=$\frac{61}{3}$元,
故當P=$\frac{39}{2}$時,月利潤最大,為1650元.

點評 本題主要考查與函數的應用問題,根據條件建立函數關系,利用二次函數的圖象和性質是即可得到結論.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

15.設函數y=sin(?x+$\frac{π}{3}$)(0<x<π),當且僅當x=$\frac{π}{6}$時,y取得最大值,則正數?的值為1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.F(x)=(x3-2x)f(x)(x≠0)是奇函數,且f(x)不恒等于零,則f(x)為(  )
A.奇函數B.偶函數C.奇函數或偶函數D.非奇非偶函數

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知函數f(x)=$\left\{\begin{array}{l}x+2,x≤-1\\{x^2},-1<x<1\\ 2x,x≥1\end{array}$,若f(x)=1,則x的值為(  )
A.1,-1B.-1C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知函數f(x)=$\left\{\begin{array}{l}f({x+2}),x<3\\{2^x},x≥3\end{array}$,則f(log23)=12.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.在△ABC中,角A,B,C所對的邊分別為a,b,c,且bcosA,ccosA.acosB成等差數列.
(1)求角A;
(2)若△ABC的面積為$\sqrt{3}$,a=2,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.已知集合A={1,2,3},B={x|x<a),若A⊆B,則實數a的取值范圍是(  )
A.(-∞,1)B.(1,+∞)C.(-∞,3)D.(3,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.以等腰直角三角形ABC斜邊AB的中線CD為棱,將△ABC折疊,使平面ACD⊥平面BCD,則AC與BC的夾角為(  )
A.30°B.60°C.90°D.不確定

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.在△ABC中,已知A(3,1),B(1,0),C(2,3),
(1)判斷△ABC的形狀;
(2)設O為坐標原點,$\overrightarrow{OD}$=m$\overrightarrow{OC}$(m∈R),且($\overrightarrow{AB}$-m$\overrightarrow{OC}$)∥$\overrightarrow{BC}$,求|$\overrightarrow{OD}$|.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲生活片 | 99久久久免费视频 | 青青草小视频 | 免费观看毛片 | 草久在线视频 | 欧美三级视频在线播放 | 精品一区免费 | 99热在线播放 | 亚洲一区二区三区欧美 | 欧美日韩在线一区二区 | 成人一级毛片 | 日韩在线中文 | 国产精品久久久久久影视 | av在线一区二区 | 欧美激情精品一区 | 欧美性猛交久久久乱大交小说 | 国产视频1区 | 亚洲国产福利一区 | 日韩欧美精品在线 | 99久久精品一区二区 | 超碰在线网 | 青青草免费在线 | 国产精品久久久久久吹潮 | 逼操| 4虎tv| 最新日韩av网址 | 蜜臀在线视频 | 亚洲一区二区三区观看 | 欧美色成人 | 国产三区在线观看 | 大尺度cosplay福利裸 | 国产精品99久久久久久宅男 | 日本少妇xxxx软件 | 日本一区二区视频在线观看 | 日韩一区二区精品 | 亚洲最黄网站 | 免费一区在线 | 羞羞视频在线观看免费 | 九九热这里只有精品在线观看 | 国产精品久久久久久久久久 | 国产一区二区三区在线免费观看 |