分析 (1)求得h(x)的導數,由導數大于0,可得增區間;導數小于0,可得減區間,進而得到極值;
(2)先將g(x)在(0,+∞)上遞增,轉化成g′(x)≥0對x∈(0,+∞)恒成立,最后根據二次函數的圖象與性質可求出實數a的取值范圍;
(3)對于能否問題,可先假設能,即設F(x)在(x0,F(x0))的切線平行于x軸,其中F(x)=2lnx-x2-kx結合題意,列出方程組,證得函數y=lnu-$\frac{2(u-1)}{u+1}$在(0,1)上單調遞增,最后出現矛盾,說明假設不成立,即切線不能否平行于x軸.
解答 解:(1)由已知,$h'(x)=\frac{{2{x^2}-3x+1}}{x}$,
令$h'(x)=\frac{{2{x^2}-3x+1}}{x}$=0,得$x=\frac{1}{2},或x=1$,
∴h(x)在$({0,\frac{1}{2}})$單調遞增,在$({\frac{1}{2},1})$單調遞減,在(1,+∞)單調遞增.
∴h(x)極小值=h(1)=-2,$h{(x)_{極大值}}=h(\frac{1}{2})=-\frac{5}{4}-ln2$;
(2)∵g(x)=f(x)-ax=lnx+x2-ax,
∴g'(x)=$\frac{1}{x}$+2x-a,定義域:(0,+∞),
∴m(x)=1+2x2-ax≥0在(0,+∞)成立.
1+2x2-ax的對稱軸:x=$\frac{a}{4}$,
當a≤0時,只要最小值m'(0)=1>0即可;
當a>0時,m'($\frac{a}{4}$)=$\frac{{a}^{2}}{8}$-$\frac{{a}^{2}}{4}$+1≥0則$\frac{{a}^{2}}{8}$≤1,
解得0<a≤2$\sqrt{2}$,
綜上a≤2$\sqrt{2}$;
(3)假設函數F(x)在(x0,F(x0))處的切線平行于x軸,
F(x)=2lnx-x2-kx,依題意,2lnm-m2-km=0;2lnn-n2-kn=0,
相減得2ln$\frac{m}{n}$-(m+n)(m-n)=k(m-n),
${F^/}({x_0})=\frac{2}{x_0}-2{x_0}-k=0$,∴$k=\frac{2}{x_0}-2{x_0}$,
又m+n=2x0,$k=\frac{4}{m+n}-(m+n)$
所以ln$\frac{m}{n}$=$\frac{2(m-n)}{m+n}$=$\frac{2(\frac{m}{n}-1)}{\frac{m}{n}+1}$,
設u=$\frac{m}{n}$∈(0,1),y=lnu-$\frac{2(u-1)}{u+1}$(u∈(0,1)),
y′=$\frac{1}{u}$-$\frac{2(u+1)-2(u-1)}{(u+1)^{2}}$=$\frac{(u-1)^{2}}{u(u+1)^{2}}$>0
設y=lnu-$\frac{2(u-1)}{u+1}$(u∈(0,1)),
所以函數y=lnu-$\frac{2(u-1)}{u+1}$在(0,1))上單調遞增,
因此,當0<u<1時,y<0,
即lnu-$\frac{2(u-1)}{u+1}$<0
也就是ln$\frac{m}{n}$<$\frac{2(\frac{m}{n}-1)}{\frac{m}{n}+1}$,
所以ln$\frac{m}{n}$=$\frac{2(\frac{m}{n}-1)}{\frac{m}{n}+1}$無解.
所以F(x)在(x0,F(x0))處的切線不能平行于x軸.
點評 利用導數工具討論函數的單調性,是求函數的值域和最值的常用方法,本題還考查了分類討論思想在函數題中的應用,同學們在做題的同時,可以根據單調性,結合函數的草圖來加深對題意的理解.
科目:高中數學 來源: 題型:選擇題
A. | ③④ | B. | ②③ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)=|x|和g(x)=$\sqrt{{x}^{2}}$ | B. | f(x)=$\sqrt{{x}^{2}}$和 g(x)=($\sqrt{x}$)2 | ||
C. | f(x)=$\frac{{x}^{2}-1}{x-1}$和g(x)=x+1 | D. | f(x)=x-1與g(x)=$\frac{{x}^{2}}{x}$-1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,+∞)∪(-∞,0) | B. | (0,1) | C. | $({1,\sqrt{2}}]$ | D. | $({1,\sqrt{2}}]∪[{-\sqrt{2},0})$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com