分析 (1)任取x1、x2∈[-1,1],且x1<x2,利用函數的單調性和奇偶性求得f(x1)-f(x2)<0,可得f(x)是[-1,1]上的增函數.
(2)由題意可得f(x)max≤m2-2am+1,即m2-2am≥0對任意的a∈[-1,1]恒成立,再根據$\left\{\begin{array}{l}{g(-1)=2m{+m}^{2}≥0}\\{g(1)=-2m{+m}^{2}≥0}\end{array}\right.$,解得m的范圍.
解答 解:(1)證明:任取x1、x2∈[-1,1],且x1<x2,則f(x1)-f(x2)=f(x1)+f(-x2),
∵$\frac{f(a)+f(b)}{a+b}$>0,∴$\frac{f{(x}_{1})+f({-x}_{2})}{{x}_{1}+({-x}_{2})}$>0,∵x1-x2<0,
∴f(x1)-f(x2)=f(x1)+f(-x2)<0.則f(x)是[-1,1]上的增函數.
(2)要使f(x)≤m2-2am+1對所有的x∈[-1,1],a∈[-1,1]恒成立,
只須f(x)max≤m2-2am+1,即1≤m2-2am+1對任意的a∈[-1,1]恒成立,
亦即m2-2am≥0對任意的a∈[-1,1]恒成立.
令g(a)=-2ma+m2,則只須$\left\{\begin{array}{l}{g(-1)=2m{+m}^{2}≥0}\\{g(1)=-2m{+m}^{2}≥0}\end{array}\right.$,解得m≤-2或m≥2或m=0.
點評 本題主要考查函數的單調性和奇偶性的綜合應用,函數的恒成立問題,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 10$\sqrt{2}$ | B. | 5$\sqrt{2}$ | C. | 5$\sqrt{6}$ | D. | $\frac{10\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
等級 | 優秀 | 合格 | 不合格 |
男生(人) | 15 | x | 5 |
女生(人) | 15 | 3 | y |
男生 | 女生 | 總計 | |
優秀 | 15 | 15 | 30 |
非優秀 | 10 | 5 | 15 |
總計 | 25 | 20 | 45 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|2<x≤3} | B. | {x|3≤x<4} | C. | {x|2<x<4} | D. | {x|2≤x<4} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com