分析 (1)運用向量的數量積的坐標表示,結合正弦函數的對稱軸方程,即可得到所求;
(2)運用誘導公式和同角三角函數的平方關系,計算即可得到所求值.
解答 解:(1)向量$\overrightarrow{a}$=(sinx,1),$\overrightarrow{b}$=(1,cosx),x∈R,
設f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),
由x+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,
可得x=kπ+$\frac{π}{4}$,k∈Z,
即有函數f(x)的對稱軸方程為x=kπ+$\frac{π}{4}$,k∈Z;
(2)f(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$,θ∈(0,$\frac{π}{2}$),
可得$\sqrt{2}$sin(θ+$\frac{π}{4}$+$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$,
即有cosθ=$\frac{1}{3}$,sinθ=$\sqrt{1-\frac{1}{9}}$=$\frac{2\sqrt{2}}{3}$,
f(θ-$\frac{π}{4}$)=$\sqrt{2}$sin(θ-$\frac{π}{4}$+$\frac{π}{4}$)=$\sqrt{2}$sinθ=$\frac{4}{3}$.
點評 本題考查向量的數量積的坐標表示和三角形函數的恒等變換,以及正弦函數的圖象和性質,考查運算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{9\sqrt{3}}{8}$ | B. | $\frac{9}{8}$ | C. | 9$\sqrt{3}$ | D. | 12 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,0]∪[$\frac{3}{4}$,+∞) | B. | (-∞,0]∪[$\frac{4}{3}$,+∞) | C. | [0,$\frac{3}{4}$] | D. | [0,$\frac{4}{3}$] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(n)=n+1 | B. | f(n)=2n-1 | C. | $f(n)=\frac{{n({n-3})}}{2}$ | D. | $f(n)=\frac{{n({n+1})}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com