日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

15.已知雙曲線的標(biāo)準(zhǔn)方程為$\frac{x^2}{3}-{y^2}=1$,直線l:y=kx+m(k≠0,m≠0)與雙曲線交于不同的兩點C、D,若C、D兩點在以點A(0,-1)為圓心的同一個圓上,則實數(shù)m的取值范圍是(  )
A.$\{m|-\frac{1}{4}<m<0\}$B.{m|m>4}C.{m|0<m<4}D.$\{m|-\frac{1}{4}<m<0或m>4\}$

分析 M(x1,y1),N(x2,y3),線段MN的中點為B((x0,y0),根據(jù)韋達(dá)定理和中點坐標(biāo)公式,以及斜率公式即可求出

解答 解:設(shè)M(x1,y1),N(x2,y3),線段MN的中點為B((x0,y0),
由$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}-3{y}^{2}=3}\end{array}\right.$,可得(3k2-1)x2+6kmx+3m2+3=0
∴$\left\{\begin{array}{l}{3{k}^{2}-1≠0}\\{△>0}\end{array}\right.$,即$\left\{\begin{array}{l}{{k}^{2}≠\frac{1}{3}}\\{{m}^{2}+1>3{k}^{2}}\end{array}\right.$,①,
由$\left\{\begin{array}{l}{{x}_{0}=\frac{{x}_{1}+{x}_{2}}{2}=-\frac{3km}{3{k}^{2}-1}}\\{{y}_{0}=kx+m=-\frac{m}{3{k}^{2}-1}}\end{array}\right.$,
根據(jù)題意可得AB⊥MN,
∴kAB=$\frac{{y}_{0}+1}{{x}_{0}-0}$=$\frac{-m+3{k}^{2}-1}{-3km}$=-$\frac{1}{k}$,3k2=m+1,②,
由①②可得$\left\{\begin{array}{l}{4m+1>0}\\{{m}^{2}+1>4m+1}\\{4m+1≠1}\end{array}\right.$,解得m>4或-$\frac{1}{4}$<m<0,
故選:D

點評 本題考查了雙曲線和直線的關(guān)系以及韋達(dá)定理中點坐標(biāo)公式斜率公式,考查了學(xué)生的運算能力,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.一個扇形的所在的圓的半徑為5,該扇形的弧長為5
(1)求該扇形的面積              
(2)求該扇形中心角的弧度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.寒假期間,為了讓同學(xué)們有國際視野,我校組織了部分同學(xué)到美國游學(xué).已知李老師所帶的隊有3名男同學(xué)A、B、C和3名女同學(xué)X,Y,Z構(gòu)成,其班級情況如表:
甲班乙班丙班
男同學(xué)ABC
女同學(xué)XYZ
現(xiàn)從這6名同學(xué)中隨機選出2人做回訪(每人被選到的可能性相同)
(1)用表中字母列舉出所有可能的結(jié)果;
(2)設(shè)M為事件“選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)”,求事件M發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在∠BAC=θ,中,角A、B、C的對邊分別是a,b,c已知$b=2,c=2\sqrt{2}$,且$C=\frac{π}{4}$,則△ABC的面積為$\sqrt{3}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知正三棱柱ABC-A1B1C1的所有頂點都在球O的球面上,底面△ABC是邊長為3的正三角形,側(cè)棱長為2,則球O的表面積為(  )
A.B.C.16πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.$\overrightarrow{a}$與 $\overrightarrow{b}$的長都為2,且$\overrightarrow{a}⊥(\overrightarrow{b}-\overrightarrow{a}$),則$\overrightarrow{a}$?$\overrightarrow{b}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在三棱錐S-ABC中,SA⊥底面ABC,SA=AB=$\frac{1}{2}$AC=a,∠BAC=60°,D是SC上的點.
(Ⅰ)若SD=$\frac{1}{4}$SC,求證:AC⊥BD;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知logax>logay(0<a<1),則下列不等式成立的是(  )
A.3x-y<1B.lnx>lnyC.sin x>sin yD.x3>y3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知平面直角坐際系xOy中,以O(shè)為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C1方程為ρ=2sinθ;C2的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)).
(I)寫出曲線C1的直角坐標(biāo)方程并判斷點(1,$\frac{π}{4}$)和曲線C1的位置關(guān)系.
(Ⅱ)若曲線C1與曲線C2距離的交點為A,B且|AB|=$\frac{4\sqrt{5}}{5}$,求曲線C2的普通方程.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 一区在线视频 | 欧美一级全黄 | 欧美精品在线一区二区三区 | 欧美淫视频 | 九九热精 | 日韩精品免费在线视频 | 毛片免费在线观看 | 日本视频在线观看 | 亚洲成人二区 | 亚洲+变态+欧美+另类+精品 | 亚洲精品乱码8久久久久久日本 | 毛片一区二区三区 | 欧美在线播放一区 | 中文字幕色婷婷在线视频 | 久久av一区二区三区 | 免费爱爱视频 | 蜜桃色网| 国产一区二区三区高清 | 欧美日韩在线不卡 | 久草天堂| 91精品久久久久 | 国外成人免费视频 | 亚洲成人在线免费 | 国产成在线观看免费视频 | 国产日韩一区二区三区 | 亚洲艹| 久久99久久99精品 | 久久精品一| 精品自拍视频 | 国产一区二区久久久 | 欧美黄视频 | 国产精品一区二区三 | 国产精品一区自拍 | 国产一区二区免费视频 | 黄色毛片在线观看 | 久久久久久免费毛片精品 | 成人午夜激情 | 黄色a视频 | 91国色| 国产日韩欧美亚洲 | 少妇av片 |