日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

18.已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)滿足:f(x+3)=-$\frac{1}{f(x)}$,且當(dāng)-3≤x<-1時(shí),f(x)=-(x+2)2,當(dāng)-1≤x<3時(shí),f(x)=x,則f(1)+f(2)+f(3)+…+f(2014)=337.

分析 通過(guò)f(x+3)=-$\frac{1}{f(x)}$可知函數(shù)f(x)是周期T=6的函數(shù),進(jìn)而可求出f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0,f(5)=f(-1)=-1,f(6)=f(0)=0,利用2014=335×6+4計(jì)算即得結(jié)論.

解答 解:因?yàn)閒(x+3)=-$\frac{1}{f(x)}$,
所以f(x+6)=f(x+3+3)=-$\frac{1}{f(x+3)}$=-$\frac{1}{-\frac{1}{f(x)}}$=f(x),
即函數(shù)f(x)是周期T=6的函數(shù),
又因?yàn)?3≤x<-1時(shí)f(x)=-(x+2)2,當(dāng)-1≤x<3時(shí)f(x)=x,
所以f(1)=1,f(2)=2,f(3)=f(-3)=-1,
f(4)=f(-2)=0,f(5)=f(-1)=-1,f(6)=f(0)=0,
因?yàn)?014=335×6+4,且f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,
所以所求值為335+(1+2-1+0)=337,
故答案為:337.

點(diǎn)評(píng) 本題考查求函數(shù)的值,考查函數(shù)的周期性,考查分段函數(shù),注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知|z|=2+z+3i,求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖所示,在正方體ABCD-A1B1C1D1中,E、F分別是AB、AD的中點(diǎn),則異面直線B1C與EF所成的角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.我國(guó)南北朝時(shí)期數(shù)學(xué)家、天文學(xué)家祖暅提出了著名的祖暅原理:“冪勢(shì)既同,則積不容異”.“勢(shì)”即是高,“冪”即是面積.意思是說(shuō)如果兩等高的幾何體在同高處截得兩幾何體的截面積相等,那么這兩個(gè)幾何體的體積相等.已知某不規(guī)則幾何體與如圖所對(duì)應(yīng)的幾何體滿足:“冪勢(shì)同”,則該不規(guī)則幾何體的體積為(圖中的網(wǎng)格紙中的小正方形的邊長(zhǎng)為1)( 。
A.4B.8C.16D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{x}^{2}}{2e}$-ax.
(1)若a=$\frac{1}{2}$,求曲線y=f(x)在(e,f(e))處的切線方程;
(2)若關(guān)于x的不等式f(x)≥ax-$\frac{1}{2}$≥lnx-ax在(0,+∞)上恒成立,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求函數(shù)f(x)=sin(x+$\frac{π}{6}$)在x取得何值時(shí)達(dá)到最大值?在x取得何值時(shí)達(dá)到最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.小王大學(xué)畢業(yè)后決定利用所學(xué)知識(shí)自主創(chuàng)業(yè),在一塊矩形的空地上辦起了養(yǎng)殖場(chǎng),如圖所示,四邊形ABCD為矩形,AB=200米,AD=200$\sqrt{3}$米,現(xiàn)為了養(yǎng)殖需要,在養(yǎng)殖場(chǎng)內(nèi)要建造蓄水池,小王因地制宜,建造了一個(gè)三角形形狀的蓄水池,其中頂點(diǎn)分別為A,E,F(xiàn)(E,F(xiàn)兩點(diǎn)在線段BD上),且∠EAF=$\frac{π}{6}$,設(shè)∠BAE=α.
(1)請(qǐng)將蓄水池的面積f(α)表示為關(guān)于角α的函數(shù)形式,并寫(xiě)出角α的定義域;
(2)當(dāng)角α為何值時(shí),蓄水池的面積最大?并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某景區(qū)欲建兩條圓形觀景步道M1,M2(寬度忽略不計(jì)),如圖所示,已知AB⊥AC,AB=AC=AD=60(單位:米),要求圓M與AB,AD分別相切于點(diǎn)B,D,圓M2與AC,AD分別相切于點(diǎn)C,D.
(1)若$∠BAD=\frac{π}{3}$,求圓M1,M2的半徑(結(jié)果精確到0.1米)
(2)若觀景步道M1,M2的造價(jià)分別為每米0.8千元與每米0.9千元,則當(dāng)∠BAD多大時(shí),總造價(jià)最低?最低總造價(jià)是多少?(結(jié)果分別精確到0.1°和0.1千元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,a、b、c分別是三個(gè)內(nèi)角A、B、C的對(duì)邊,若向量$\overrightarrow x$=$(a,\sqrt{3}b)$與向量$\overrightarrow y=(cosA,sinB)$共線
(1)求角A;
(2)若a=2,求b+c得取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 久久精品一 | 亚洲精品影院 | 午夜窝窝 | 色接久久 | 五月婷婷av | 天堂成人av| 国产精品一区av | 欧洲一区在线 | 国产一级网站 | 欧美午夜视频 | 国产精品九九 | 韩日一区二区 | 久久久久一区 | 日批视频在线播放 | 亚洲精品在线网址 | 国产一区二区三区视频观看 | 在线观看日韩一区 | 麻豆精品一区二区 | 欧美日韩国产综合视频 | 亚洲自拍一区在线观看在线观看 | 黑人巨大精品欧美一区二区小视频 | 久久精品国产清自在天天线 | 激情视频一区二区三区 | 久久情趣视频 | 亚洲精品一区久久久久久 | 九九热精 | 另类天堂 | 激情五月婷婷在线 | 国产视频在线播放 | 婷婷成人免费视频 | 中国国产一级毛片 | 国产免费自拍 | 日韩精品在线看 | 日韩高清成人 | 国产精品一区免费在线观看 | 99精品一区二区 | 国产成人一区二区三区 | 欧美在线| 色噜噜色偷偷 | 亚洲伦理| 欧美在线一区二区三区 |