【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD⊥平面PAB.
(1)求證:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.
【答案】(1)詳見解析;(2).
【解析】
( 1)由題設條件,易證得PC⊥AB,CD⊥AB,故可由線面垂直的判定定理證得AB⊥平面PCB;(2)由圖形知,取AP的中點O,連接CO、DO,可證得∠COD為二面角C﹣PA﹣B的平面角,在△CDO中求∠COD即可.
(1)證明:∵PC⊥平面ABC,AB平面ABC,
∴PC⊥AB.
∵CD⊥平面PAB,AB平面PAB,
∴CD⊥AB.又PC∩CD=C,∴AB⊥平面PCB.
(2)取AP的中點O,連接CO、DO.
∵PC=AC=2,∴CO⊥PA,CO,
∵CD⊥平面PAB,由三垂線定理的逆定理,得DO⊥PA.
∴∠COD為二面角C﹣PA﹣B的平面角.
由(1)AB⊥平面PCB,∴AB⊥BC,
又∵AB=BC,AC=2,求得BC
PB,CD
∴
cos∠COD.
科目:高中數學 來源: 題型:
【題目】已知橢圓:的左、右點分別為
點
在橢圓上,且
(1)求橢圓的方程;
(2)過點(1,0)作斜率為的直線
交橢圓
于M、N兩點,若
求直線
的方程;
(3)點P、Q為橢圓上的兩個動點,為坐標原點,若直線
的斜率之積為
求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】統計學中將
個數
的和記作
(1)設,求
;
(2)是否存在互不相等的非負整數,
,使得
成立,若存在,請寫出推理的過程;若不存在請證明;
(3)設是不同的正實數,
,對任意的
,都有
,判斷
是否為一個等比數列,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若存在與正實數
,使得
成立,則稱函數
在
處存在距離為
的對稱點,把具有這一性質的函數
稱之為“
型函數”.
(1)設,試問
是否是“
型函數”?若是,求出實數
的值;若不是,請說明理由;
(2)設對于任意
都是“
型函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲乙兩人分別投擲兩顆骰子與一顆骰子,設甲的兩顆骰子的點數分別為與
,乙的骰子的點數為
,則擲出的點數滿足
的概率為________(用最簡分數表示).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果數列對于任意
,都有
,其中
為常數,則稱數列
是“間等差數列”,
為“間公差”.若數列
滿足
,
,
.
(1)求證:數列是“間等差數列”,并求間公差
;
(2)設為數列
的前n項和,若
的最小值為-153,求實數
的取值范圍;
(3)類似地:非零數列對于任意
,都有
,其中
為常數,則稱數列
是“間等比數列”,
為“間公比”.已知數列
中,滿足
,
,
,試問數列
是否為“間等比數列”,若是,求最大的整數
使得對于任意
,都有
;若不是,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com