日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
4.若數列{an}的首項a1=2,且${S_{n+1}}=\frac{2}{3}{a_{n+1}}+\frac{1}{3}$(n∈z+),則數列{an}的通項公式是an=$\left\{\begin{array}{l}{2,n=1}\\{-5•(-2)^{n-2},n≥2}\end{array}\right.$.

分析 由${S_{n+1}}=\frac{2}{3}{a_{n+1}}+\frac{1}{3}$(n∈z+),可推出Sn=$\frac{2}{3}$an+$\frac{1}{3}$,從而可得{an}是以-5為首項,-2為公比的等比數列,從而解出數列的通項公式.

解答 解:∵${S_{n+1}}=\frac{2}{3}{a_{n+1}}+\frac{1}{3}$(n∈z+),可推出Sn=$\frac{2}{3}$an+$\frac{1}{3}$,n≥2,兩式作差的,an+1=$\frac{2}{3}$an+1-$\frac{2}{3}$an
即an+1=-2an
則{an}是以a2為首項,-2為公比的等比數列,數列{an}的首項a1=2,∴a1+a2=$\frac{2}{3}$a2+$\frac{1}{3}$,
a2=-5,
則an=-5•(-2)n-2.n≥2.
數列的通項公式為:${a_n}=\left\{\begin{array}{l}2,n=1\\-5{(-2)^{n-2}},n≥2\end{array}\right.$.
故答案為:$\left\{\begin{array}{l}{2,n=1}\\{-5•(-2)^{n-2},n≥2}\end{array}\right.$.

點評 本題考查了數列的通項公式的推導,數列遞推關系式的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

14.若tan(α+$\frac{π}{4}$)=2,則tanα的值等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.對于0<a<1,給出下列四個不等式(  )
①loga(1+a)<loga(1+$\frac{1}{a}$)②loga(1+a)>loga(1+$\frac{1}{a}$); ③a1+a<a${\;}^{1+\frac{1}{a}}$;④a1+a>a${\;}^{1+\frac{1}{a}}$
其中成立的是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.已知圓${C_1}:{x^2}+{y^2}=4$與圓${C_2}:{(x-1)^2}+{(y-3)^2}=4$,過動點P(a,b)分別作圓C1、圓C2的切線PM,PN,( M,N分別為切點),若|PM|=|PN|,則a2+b2-6a-4b+13的最小值是$\frac{8}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.圖(1)、(2)、(3)、(4)分別包含1個、5個、13個、25個第二十九屆北京奧運會吉祥物“福娃迎迎”,按同樣的方式構造圖形,設第n個圖形包含f(n)個“福娃迎迎”.則f(6)=61.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.$\sqrt{1-2cos(\frac{π}{2}+3)sin(\frac{π}{2}-3)}$=(  )
A.-sin3-cos3B.sin3-cos3C.sin3+cos3D.cos3-sin3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.$cos\sqrt{2},sin\sqrt{2},tan\sqrt{2}$的大小關系是(  )
A.$sin\sqrt{2}<cos\sqrt{2}<tan\sqrt{2}$B.$cos\sqrt{2}<sin\sqrt{2}<tan\sqrt{2}$C.$cos\sqrt{2}<tan\sqrt{2}<sin\sqrt{2}$D.$sin\sqrt{2}<tan\sqrt{2}<cos\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.如圖,某公園中間有一塊等腰梯形的綠化區ABCD,AB,CD的長度相等,均為2百米,BC的長度為4百米,其中BMN是半徑為1百米的扇形,$∠ABC=\frac{π}{3}$.管理部門欲在綠化區ABCD中修建從M到C的觀賞小路$\widehat{MP}-PQ-QC$;其中P為$\widehat{MN}$上異于M,N的一點,小路PQ與BC平行,設∠PBC=θ.
(1)用θ表示PQ的長度,并寫出θ的范圍;
(2)當θ取何值時,才能使得修建的觀賞小路$\widehat{MP}-PQ-QC$的總長度最短?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.設函數f(x)=|-2x+4|-|x+6|.
(1)求不等式f(x)≥0的解集;
(2)若f(x)>a+|x-2|存在實數解,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 四虎影音 | а天堂中文最新一区二区三区 | 一区在线免费观看 | 久久久免费 | 97国产精品人人爽人人做 | 精品日韩| 欧美一级成人欧美性视频播放 | 日本一区二区三区四区 | 91精品视频在线播放 | 成人精品| 夜夜躁狠狠躁夜躁2021鲁大师 | 免费av播放 | 中文字幕日韩一区 | 青青草国产在线 | 看a网站| av四虎| 欧美精品在线一区 | 久久天天躁狠狠躁夜夜躁2014 | 亚洲伦理 | 亚洲精品成人av | 国产精品国产成人国产三级 | 91高清视频在线观看 | 欧美精品一区二区视频 | 欧美日韩视频在线观看一区 | 日本久久精品一区 | 国产精品美女视频 | 久久久91精品国产一区二区精品 | 欧美一级片在线观看 | 狠狠做深爱婷婷久久综合一区 | 国产久精品 | 久久九九免费 | 国产精品视频免费 | 91成人免费看片 | 不卡久久 | 国产 在线 | 日韩 | 日韩91精品 | 国色天香成人网 | 久久久久综合 | 精品久久久久久国产 | 韩国一区二区视频 | 91麻豆精品国产91久久久更新时间 |