日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
15.在△ABC中,角A、B、C所對的邊分別為a、b、c,B=60°,b=$\sqrt{13}$.
(1)若3sinC=4sinA,求c的值;
(2)求a+c的最大值.

分析 (1)由正弦定理可求a=$\frac{3c}{4}$,進而利用余弦定理可得c的值.
(2)由正弦定理,可得a=$\frac{2\sqrt{13}}{\sqrt{3}}$sinA,c=$\frac{2\sqrt{13}}{\sqrt{3}}$sinC,利用三角函數恒等變換的應用化簡可得a+c=2$\sqrt{13}$sin(A+$\frac{π}{6}$),由$0<A<\frac{2π}{3}$,可求范圍$\frac{π}{6}<A+\frac{π}{6}<\frac{5π}{6}$,進而利用正弦函數的性質可求最大值.

解答 解:(1)∴由3sinC=4sinA,利用正弦定理,可得:3c=4a,即a=$\frac{3c}{4}$,
∵$B=\frac{π}{3}$,b=$\sqrt{13}$.
∴由余弦定理,可得:b2=a2+c2-2accosB,即:13=($\frac{3c}{4}$)2+c2-2×$\frac{3c}{4}×c×\frac{1}{2}$,解得:c=4.
(2)由正弦定理,可得:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$=$\frac{\sqrt{13}}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{13}}{\sqrt{3}}$,
∴a=$\frac{2\sqrt{13}}{\sqrt{3}}$sinA,c=$\frac{2\sqrt{13}}{\sqrt{3}}$sinC,
∴$a+c=\frac{{2\sqrt{13}}}{{\sqrt{3}}}({sinA+sinC})=\frac{{2\sqrt{13}}}{{\sqrt{3}}}[{sinA+sin({A+B})}]=\frac{{2\sqrt{13}}}{{\sqrt{3}}}[{sinA+sin({A+\frac{π}{3}})}]$=$\frac{{2\sqrt{13}}}{{\sqrt{3}}}({\frac{3}{2}sinA+sin\frac{{\sqrt{3}}}{2}cosA})=2\sqrt{13}sin({A+\frac{π}{6}})$.
由$0<A<\frac{2π}{3}$,得$\frac{π}{6}<A+\frac{π}{6}<\frac{5π}{6}$.
所以當$A+\frac{π}{6}=\frac{π}{2}$,即$A=\frac{π}{3}$時,${({a+c})_{max}}=2\sqrt{13}$.

點評 本題主要考查了正弦定理,余弦定理,三角函數恒等變換的應用,正弦函數的圖象和性質在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

5.一個幾何體的三視圖如圖所示,其體積為$\frac{11}{6}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.函數f(x)=xm(1-x)n在區間[0,1]上的圖象如圖所示,則m,n的值為(  )
A.m=1,n=1B.m=1,n=2C.m=2,n=1D.m=2,n=2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知函數f(x)=cosωx(ω>0),將y=f(x)的圖象向右平移$\frac{π}{3}$個單位長度后,所得的圖象與原圖象重合,則ω的最小值為(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知命題p:?x∈R,sinx≤1,則¬p為(  )
A.?x∈R,sinx≤1B.?x∈R,sinx>1C.?x∈R,sinx≥1D.?x∈R,sinx>1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知F1(-3,0),F2(3,0),動點P滿足|PF1|-|PF2|=4,則點P的軌跡是(  )
A.雙曲線B.雙曲線的一支C.一條射線D.不存在

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的三個頂點B1(0,-b),B2(0,b),A(a,0),焦點F(c,0),且B1F⊥AB2,則橢圓的離心率為$\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.直線y=kx+3(k≠0)與圓x2+y2-6x-4y+9=0相交于A、B兩點,若$|AB|=2\sqrt{3}$,則k的值是$-\frac{3}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.甲有一個箱子,里面放有x個紅球,y個白球(x,y≥0,且x+y=4);乙有一個箱子,里面放有2個紅球,1個白球,1個黃球.現在甲從箱子里任取2個球,乙從箱子里任取1個球.若取出的3個球顏色全不相同,則甲獲勝.
(1)試問甲如何安排箱子里兩種顏色球的個數,才能使自己獲勝的概率最大?
(2)在(1)的條件下,設取出的3個球中紅球的個數為ξ,求ξ的分布列.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品美女久久久久久久久久久 | 国产欧美精品一区二区 | 日韩大片免费观看视频播放 | 老司机在线精品视频 | 精品久久久久久亚洲精品 | 日本一区二区视频 | 久久av一区二区三区 | 中文字幕观看 | 久久在线视频 | 欧美日韩国产欧美 | 99色综合| 亚洲精品一区久久久久久 | 天天澡天天狠天天天做 | 成人午夜精品久久久久久久蜜臀 | 狠狠操精品视频 | 欧美成人在线影院 | 欧美精品久久 | 黄色大片视频网站 | 牛牛影视成人午夜影视 | 国产精品69久久久久水密桃 | 国产精品久久久久久久久久妞妞 | 久久九九精品久久 | 久久久91精品国产一区二区 | 国产精品女教师av久久 | 亚洲自拍一区在线观看 | 成人vagaa免费观看视频 | 日本特黄特色aaa大片免费 | 欧美一区二区三区在线观看视频 | 精品久久久久久久久久久久 | 日韩中文字幕在线观看 | 国产免费成人在线 | 欧美一级片在线播放 | 国产黄a三级三级看三级 | 久免费视频| 国产日批| 男女视频在线观看 | 久久国产精品免费一区二区三区 | 丝袜+亚洲+另类+欧美+变态 | 亚洲精选一区 | 亚洲精品一区二区三区在线 | a在线看|