A. | $\frac{\sqrt{10}}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{3\sqrt{10}}{10}$ | D. | $\frac{3}{5}$ |
分析 以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法能求出異面直線BE與CD1所形成角的余弦值.
解答 解:以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,
設AA1=2AB=2,
則B(1,1,0),E(1,0,1),C(0,1,0),D1(0,0,2),
$\overrightarrow{BE}$=(0,-1,1),$\overrightarrow{C{D}_{1}}$=(0,1,-2),
設異面直線BE與CD1所形成角為θ,
則cosθ=$\frac{|\overrightarrow{BE}•\overrightarrow{C{D}_{1}}|}{|\overrightarrow{BE}|•|\overrightarrow{C{D}_{1}}|}$=$\frac{3}{\sqrt{2}•\sqrt{5}}$=$\frac{3\sqrt{10}}{10}$.
異面直線BE與CD1所形成角的余弦值為$\frac{3\sqrt{10}}{10}$.
故選:C.
點評 本題考查異面直線所成角的余弦值的求法,是基礎題,解題時要認真審題,注意空間思維能力的培養.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $-2\sqrt{3}$ | C. | $2\sqrt{2}$ | D. | $-2\sqrt{2}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com