日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

13.已知定義在(0,+∞)上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且f'(x)(xlnx2)>2f(x),則( 。
A.6f(e)>2f(e3)>3f(e2B.6f(e)<3f(e2)<2f(e3C.6f(e)>3f(e2)>2f(e3D.6f(e)<2f(e3)<3f(e2

分析 令g(x)=$\frac{f(x)}{l{nx}^{2}}$,求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性判斷即可.

解答 解:令g(x)=$\frac{f(x)}{l{nx}^{2}}$,則g′(x)=$\frac{f′(x)•(xl{nx}^{2})-2f(x)}{{x(l{nx}^{2})}^{2}}$>0,
故g(x)在(0,+∞)遞增,
故g(e)<g(e2)<g(e3),
故6f(e)<3f(e2)<2f(e3),
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)值的大小比較,構(gòu)造新函數(shù)g(x)是解題的關(guān)鍵,本題是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知集合A={x|-2<x<2},集合B={1,2},則A∩B={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=lnx-ax(a>0),設(shè)$g(x)=f({\frac{2}{a}-x})$.
(1)判斷函數(shù)h(x)=f(x)-g(x)零點(diǎn)的個(gè)數(shù),并給出證明;
(2)首項(xiàng)為m的數(shù)列{an}滿足:①an+1+an≠$\frac{2}{a}$;②f(an+1)=g(an).其中0<m<$\frac{1}{a},n∈{N^*}$.求證:對(duì)于任意的i,j∈N*,均有ai-aj<$\frac{1}{a}$-m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.有三種卡片分別寫有數(shù)字1,10,100,從上述三種卡片中選取若干張,使得這些卡片之和為m(m為正整數(shù)).考慮不同的選法種數(shù),例如m=11時(shí)有兩種選法:“一張卡片寫有1,另一張寫有10”或“11張寫有1的卡片”.
(1)若m=100,直接寫出選法種數(shù);
(2)設(shè)n為正整數(shù),記所選卡片的數(shù)字和為100n的選法種數(shù)為an,當(dāng)n≥2時(shí),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1+2lnx}{x^2}$,且方程f(x)-m=0有兩個(gè)相異實(shí)數(shù)根x1,x2(x1>x2).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求實(shí)數(shù)m的取值范圍;
(3)證明:x12x2+x1x22>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PD=AD=2,△PAC為正三角形,E為PA的中點(diǎn),F(xiàn)為線段BC上任意一點(diǎn)(不含端點(diǎn)).
(1)證明:平面CDE⊥平面AFP;
(2)是否存在點(diǎn)F,使得三棱錐F-PAB體積為$\frac{2}{3}$,若存在,請(qǐng)確定點(diǎn)F的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知$α∈(0,\frac{π}{2}),sin(\frac{π}{4}-α)sin(\frac{π}{4}+α)=-\frac{3}{10}$,則tanα=(  )
A.$\frac{1}{2}$B.2C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,已知等邊△ABC的邊長(zhǎng)為2,圓A的半徑為1,PQ為圓A的任意一條直徑.
(1)判斷$\overrightarrow{BP}•\overrightarrow{CQ}-\overrightarrow{AP}•\overrightarrow{CB}$的值是否會(huì)隨點(diǎn)P的變化而變化,請(qǐng)說(shuō)明理由.
(2)求$\overrightarrow{BP}•\overrightarrow{CQ}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知a,b∈R,i2=-1,則“a=b=1”是“$\frac{2+2i}{1-i}={(a+bi)^2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 91久久久精品视频 | 成人免费视频 | 亚洲免费视频网址 | 国产蜜臀97一区二区三区 | 午夜亚洲电影 | 2018国产大陆天天弄 | 在线观看成人高清 | 久久久久无码国产精品一区 | 国产美女久久久 | 国产欧美精品一区二区 | 91在线导航 | 国产特级毛片 | 日韩欧美一区二区三区免费观看 | 国模精品视频一区二区 | 全黄大全大色全免费大片 | 国产乱码一二三区精品 | 一区二区三区在线观看视频 | 欧美视频二区 | 日韩中文字幕一区 | 日本精a在线观看 | 再深点灬舒服灬太大了添少妇视频 | 成人国产免费视频 | 拍真实国产伦偷精品 | 中文av在线免费观看 | 国产精品高潮呻吟 | 久久一二 | 99精品一区二区 | 蜜桃av人人夜夜澡人人爽 | 九九精品在线 | 九色91在线 | 午夜精品久久久久久久久久久久 | 国产精品污www在线观看 | 亚洲一区二区三区在线播放 | 国产浪潮av色综合久久超碰 | 羞羞在线视频 | 日韩在线不卡 | 久热在线视频 | 东北一级毛片 | 亚洲色图图片 | 亚洲欧美国产一区二区 | 国产欧美亚洲精品 |