日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,橢圓C的一個短軸端點與拋物線x2=4y的焦點重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓C右焦點的直線l交橢圓于A,B兩點,若以AB為直徑的圓過原點,求直線l方程.

分析 (1)由拋物線x2=4y的焦點坐標為(0,1),則b=1,根據離心率公式,即可求得a的值,求得橢圓的標準方程;
(2)橢圓右焦點為$(\sqrt{3},0)$.由$\overrightarrow{OA}•\overrightarrow{OB}=0$.若直線AB的斜率不存在,代入不成立,當斜率存在,直線AB的方程為$y=k(x-\sqrt{3})$.代入拋物線方程,由韋達定理及向量數量積的坐標表示,即可求得k的值,求得直線直線l方程.

解答 解:(1)由題意:橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)焦點在x軸上,
由拋物線x2=4y的焦點坐標為(0,1),
橢圓的離心率e=$\frac{c}{a}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$=1,解得:a=2,
∴橢圓方程為$\frac{x^2}{4}+{y^2}=1$;
(2)由(1)知a2=4,b2=1,則$c=\sqrt{3}$,
∴橢圓右焦點為$(\sqrt{3},0)$.
∵以AB為直徑的圓過原點,
∴$\overrightarrow{OA}•\overrightarrow{OB}=0$.
若直線AB的斜率不存在,則直線AB的方程為$x=\sqrt{3}$.
直線AB交橢圓于$(\sqrt{3},\frac{1}{2}),(\sqrt{3},-\frac{1}{2})$兩點,$\overrightarrow{OA}•\overrightarrow{OB}=3-\frac{1}{4}≠0$,不合題意.
若直線AB的斜率存在,設斜率為k,則直線AB的方程為$y=k(x-\sqrt{3})$.設A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}y=k(x-\sqrt{3})\\{x^2}+4{y^2}-4=0\end{array}\right.$,整理得:$(1+4{k^2}){x^2}-8\sqrt{3}{k^2}x+12{k^2}-4=0$.
由于直線AB過橢圓右焦點,可知△>0.
由韋達定理可知:${x_1}+{x_2}=\frac{{8\sqrt{3}{k^2}}}{{1+4{k^2}}},{x_1}{x_2}=\frac{{12{k^2}-4}}{{1+4{k^2}}}$,
${y_1}{y_2}={k^2}({x_1}-\sqrt{3})({x_2}-\sqrt{3})={k^2}[{x_1}{x_2}-\sqrt{3}({x_1}+{x_2})+3]=\frac{{-{k^2}}}{{1+4{k^2}}}$.
∴$\overrightarrow{OA}•\overrightarrow{OB}={x_1}{x_2}+{y_1}{y_2}=\frac{{12{k^2}-4}}{{1+4{k^2}}}+(\frac{{-{k^2}}}{{1+4{k^2}}})=\frac{{11{k^2}-4}}{{1+4{k^2}}}$.
由$\overrightarrow{OA}•\overrightarrow{OB}=0$,即$\frac{{11{k^2}-4}}{{1+4{k^2}}}=0$,可得${k^2}=\frac{4}{11},k=±\frac{{2\sqrt{11}}}{11}$.
∴直線l方程為$y=±\frac{{2\sqrt{11}}}{11}(x-\sqrt{3})$.

點評 本題考查橢圓的標準方程,直線與橢圓的位置關系,考查韋達定理及向量數量積的坐標運算,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

18.橢圓$\frac{x^2}{25}+{y^2}$=1上一點P到焦點F1的距離等于6,則點P到另一個焦點F2的距離為( 。
A.10B.8C.4D.3

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.函數f(x)=4$\sqrt{x}$+$\sqrt{x(x-1)}$的定義域為{x|x=0或x≥1}.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.在平面直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立坐標系,曲線C1的參數方程為$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數).
(1)求曲線C1的直角坐標方程;
(2)曲線C2的極坐標方程為θ=$\frac{π}{6}$(ρ∈R),求C1與C2的公共點的極坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知函數f(x)=2x+2ax-b(a,b∈R)滿足f(-2)=$\frac{17}{4}$,f(3)=$\frac{65}{8}$.
(1)判斷并證明函數f(x)在(-∞,0]上的單調性;
(2)若不等式f(x)-2t≥0對于?x∈(-∞,+∞)恒成立,求實數t的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知$f({2^x})=\frac{1}{x}$,則f(3)=( 。
A.$\frac{1}{3}$B.$\frac{1}{8}$C.log32D.log23

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.設函數f'(x)是函數f(x)(x∈R)的導函數,f(0)=1,且3f(x)=f'(x)-3,則6f(x)>f'(x)的解集為( 。
A.(0,+∞)B.(1,+∞)C.(e,+∞)D.$(\frac{e}{3},+∞)$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知函數$f(x)=\frac{{{x^2}+a}}{x},且f(1)=2$
(1)證明函數f(x)是奇函數;
(2)證明f(x)在(1,+∞)上是增函數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.中國人口已經出現老齡化與少子化并存的結構特征,測算顯示中國是世界上人口老齡化速度最快的國家之一,再不實施“放開二胎”新政策,整個社會將會出現一系列的問題,若某地區2015年人口總數為45萬,實施“放開二胎”新政策后專家估計人口總數將發生如下變化:從2016年開始到2025年每年人口比上年增加0.5萬人,從2026年開始到2035年每年人口為上一年的99%.
(1)求實施新政策后,從2016年開始到2035年,第n年的人口總數an的表達式;
(2)若新政策實施后的2016年到2035年人口平均值超過49萬,則需調整政策,否則繼續實施,問到2035年后是否需要調整政策?(說明:0.9910=(1-001)10≈0.9).

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久99国产精一区二区三区 | 在线观看不卡一区 | 国内精品久久久久久久影视蜜臀 | 欧美在线一区二区三区 | 日韩视频中文字幕 | 精品久久久久久久久久久久久久 | 日本在线免费 | 黑人巨大精品欧美一区二区小视频 | 国产a久久精品一区二区三区 | 1区在线| 久久精品久久精品国产大片 | 久久波多野结衣 | av在线色 | 国产亚洲精品久久久久动 | 国产超碰人人模人人爽人人添 | 精品亚洲国产成av人片传媒 | 91精品国产一区二区 | 日本视频一区二区三区 | 成人av免费在线 | 午夜一级黄色片 | 久久久久亚洲精品 | 性视频一区二区 | 日韩一区二区三区在线 | 欧美久久精品 | 精品视频免费观看 | 日韩中文久久 | 古风h啪肉1v1摄政王 | 国产精品久久久久久久粉嫩 | 国产精品欧美一区乱破 | 日韩一区二区三区在线播放 | 中文字幕亚洲在线观看 | 久久久久久久久99精品 | 免费a在线看 | 日韩国产精品视频 | 亚洲精品乱码久久久久久国产主播 | 亚洲国产成人精品女人 | 一级毛片网 | 日本亚洲欧美 | 国产特黄大片aaaaa毛片 | 国产精品一区在线看 | 日本在线精品视频 |