日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
2.如圖,設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1,F2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為4的直角三角形.過B1作l交橢圓于P、Q兩點,使PB2垂直QB2,求直線l的方程x+2y+2=0和x-2y+2=0.

分析 由題意設出橢圓的標準方程,結合已知列式求出橢圓方程,再設出直線l的方程x=my-2,聯立直線方程和橢圓方程,化為關于y的一元二次方程,由根與系數的關系結合向量數量積為0列式求得m值,則直線方程可求.

解答 解:設所求橢圓的標準方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),右焦點為F2(c,0).
∵△AB1B2是直角三角形,又|AB1|=|AB2|,∴∠B1AB2為直角,
因此|OA|=|OB2|,得b=$\frac{c}{2}$.
結合c2=a2-b2,得4b2=a2-b2,故a2=5b2,c2=4b2,∴離心率e=$\frac{c}{a}$=$\frac{2}{5}$$\sqrt{5}$.
在Rt△AB1B2中,OA⊥B1B2,故${S}_{△A{B}_{1}{B}_{2}}$=$\frac{1}{2}$•|B1B2|•|OA|=|OB2|•|OA|=$\frac{c}{2}$•b=b2
由題設條件△AB1B2的面積為4,得b2=4,從而a2=5b2=20.
因此所求橢圓的標準方程為:$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{4}=1$.
則B1(-2,0),B2(2,0).
由題意知直線l的傾斜角不為0,故可設直線l的方程為:x=my-2.
代入橢圓方程得(m2+5)y2-4my-16=0.
設P(x1,y1),Q(x2,y2),則${y}_{1}{y}_{2}=-\frac{16}{{m}^{2}+5}$.
又$\overrightarrow{{B}_{2}Q}=({x}_{2}-2,{y}_{2})$,
∴由PB2⊥QB2,得$\overrightarrow{{B}_{2}P}•\overrightarrow{Q{B}_{2}}=0$,
即16m2-64=0,解得m=±2.
∴滿足條件的直線有兩條,其方程分別為x+2y+2=0和x-2y+2=0,
故答案為:x+2y+2=0和x-2y+2=0.

點評 本題考查橢圓的簡單性質,考查了直線與橢圓位置關系的應用,體現了“設而不求”的解題思想方法和數學轉化思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

12.下列命題中正確的是( 。
A.命題p:“?x0∈R,$x_0^2-2{x_0}+1<0$”,則命題?p:?x∈R,x2-2x+1>0
B.“lna>lnb”是“2a>2b”的充要條件
C.命題“若x2=2,則$x=\sqrt{2}$或$x=-\sqrt{2}$”的逆否命題是“若$x≠\sqrt{2}$或$x≠-\sqrt{2}$,則x2≠2”
D.命題p:?x0∈R,1-x0<lnx0;命題q:對?x∈R,總有2x>0;則p∧q是真命題

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.證明f(x)=-x2+3在(0,+∞)上是減函數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.已知首項為-6的等差數列{an}的前7項和為0,等比數列{bn}滿足b3=a7,|b3-b4|=6.
(1)求數列{bn}的通項公式;
(2)是否存在正整數k,使得數列{$\frac{1}{_{n}}$}的前k項和大于$\sqrt{2}$?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知x+x-1=3,則${x^{\frac{3}{2}}}+{x^{-\frac{3}{2}}}$值為( 。
A.$3\sqrt{3}$B.2$\sqrt{5}$C.$4\sqrt{5}$D.$-4\sqrt{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.求滿足下列各條件的橢圓的標準方程:
(1)長軸是短軸的3倍且經過點A(3,0);
(2)短軸一個端點與兩焦點組成一個正三角形,且焦點到同側頂點的距離為$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.執行如圖所示的程序框圖,若輸出的S=$\frac{2016}{1024}$,判斷框內填入的條件可以是( 。
A.n<10B.n≤10C.n≤1024D.n<1024

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.下列函數中,函數值域為(0,+∞)的是( 。
A.y=(x+1)2,x∈(0,+∞)B.y=log${\;}_{\frac{1}{2}}$x,x∈(1,+∞)
C.y=2x-1D.y=$\sqrt{2x-1}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.若不等式($\frac{1}{2}$)x+($\frac{1}{3}$)x-m≥0在x∈(-∞,1]時恒成立,則實數m的取值范圍是(-∞,$\frac{5}{6}$].

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 蜜桃视频精品 | 黄色影院免费观看 | 久久在线视频 | 9色porny自拍视频一区二区 | 亚洲一区精品视频 | 午夜a v电影 | 在线播放国产一区二区三区 | 欧美在线高清 | 国产一区二区在线视频观看 | 热99这里只有精品 | 中国特黄毛片 | 国产精品二区三区 | 99精品99| 日韩在线电影 | 国产一区二区三区久久久久久久久 | 国产成人在线看 | 婷婷色狠狠 | 91爱啪啪 | 成人片网址| 亚洲伦理在线观看 | 99久久99热这里只有精品 | 成人妇女免费播放久久久 | 一级电影院 | 成人a网 | 国产区视频在线观看 | 亚洲免费视频在线观看 | 国产日韩视频在线 | 成人高清在线观看 | 欧洲成人午夜免费大片 | 国产亚洲一区二区三区在线 | 久久精品国产免费 | 国产成人av电影 | 亚洲人成网亚洲欧洲无码 | 久久久久久久久久久久网站 | 成人欧美一区二区三区色青冈 | 草的我好爽 | 国产在线精品福利 | 成人一区二区三区久久精品嫩草 | 四虎成人永久 | 黄色影院免费观看 | 欧美日本韩国一区二区三区 |