分析 由題意易得A值和周期,可得ω,代入點(-1,1)的坐標計算可得φ值,可得解析式.
解答 解:由題意可得A=1,周期T=$\frac{2π}{ω}$=4[1-(-1)]=8,
解得:ω=$\frac{π}{4}$,
∴f(x)=sin($\frac{π}{4}$x+φ),
由函數圖象過點(-1,1),可得1=sin(-$\frac{π}{4}$+φ),
∴-$\frac{π}{4}$+φ=kπ+$\frac{π}{2}$,k∈Z,由0≤φ<2π,可得φ=$\frac{3π}{4}$,
故函數的解析式為f(x)=sin($\frac{π}{4}$x+$\frac{3π}{4}$).
故答案為:sin($\frac{π}{4}$x+$\frac{3π}{4}$).
點評 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,考查了數形結合思想,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {1,2} | B. | {1,4} | C. | {2,4} | D. | {1,3,4} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com