A. | 5 | B. | 6 | C. | 7 | D. | 9 |
分析 利用誘導公式以及二倍角公式化簡函數的解析式,考查兩個函數的圖象,頻道零點個數即可.
解答 解:函數$f(x)=4{sin^2}\frac{x}{2}sin({x-\frac{π}{2}})+2cosx-1-|{lg({x+1})}|$
=2cosx(1-2sin2$\frac{x}{2}$)-1-|lg(x+1)|
=2cos2x-1-|lg(x+1)|
=cos2x-|lg(x+1)|.
函數$f(x)=4{sin^2}\frac{x}{2}sin({x-\frac{π}{2}})+2cosx-1-|{lg({x+1})}|$的零點,就是cos2x-|lg(x+1)|=0的根.
即:y=cos2x,與y=|lg(x+1)|解得的個數.
如圖:
lg|3π+1|>lg10=1,
兩個函數的圖象的交點有6個.
故選:B.
點評 本題考查函數的零點個數的判斷,數形結合思想的應用,考查轉化思想以及計算能力.
科目:高中數學 來源: 題型:選擇題
A. | sinx+cosx | B. | sinx-cosx | C. | -sinx+cosx | D. | -sinx-cosx |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ac>bc | B. | a2>b2 | C. | a3>b3 | D. | $\frac{1}{a}>\frac{1}{b}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com