分析 (1)利用三角恒等變換化簡函數的解析式,再利用正弦函數的周期性和單調性,求得f(x)的最小正周期和增區間.
(2)當x∈[-$\frac{π}{6},\frac{π}{4}$]時,利用正弦函數的定義域和值域,求得f(x)的最大值和最小值,并指出f(x)取得最值時對應的x的值.
解答 解:(1)因為f(x)=4cosxsin(x+$\frac{π}{6}$)-1=4cosx•($\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx)-1
=$\sqrt{3}$sin2x+2cos2x-1=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$),
故f(x)的最小正周期為π.
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,
可得函數的 增區間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
(2)∵-$\frac{π}{6}$≤x≤$\frac{π}{4}$,∴-$\frac{π}{6}$≤2x+$\frac{π}{6}$≤$\frac{2π}{3}$,當2x+$\frac{π}{6}$=$\frac{π}{2}$,即x=$\frac{π}{6}$時,f(x)取得最大值2;
當2x+$\frac{π}{6}$=-$\frac{π}{6}$,即x=-$\frac{π}{6}$時,f(x)取得最小值-1.
點評 本題主要考查三角恒等變換,正弦函數的周期性和單調性,正弦函數的定義域和值域,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $2\sqrt{3}+2$ | B. | $\sqrt{3}+1$ | C. | $2\sqrt{3}-2$ | D. | $\sqrt{3}-1$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$個單位長度 | B. | 向左平移$\frac{π}{3}$個單位長度 | ||
C. | 向右平移$\frac{π}{6}$個單位長度 | D. | 向右平移$\frac{π}{3}$個單位長度 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | x+y+1=0 | B. | x+y-1=0 | C. | x-y+1=0 | D. | x-y-1=0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {-2,2} | B. | {-2,0,2} | C. | {-2,-1,2} | D. | {-2,-1,0,2} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | 4 | C. | 8 | D. | $8\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com