分析 先求導,根據函數的對稱性,求出a的值,再分離參數,構造函數,利用導數求出函數的最大值即可
解答 解:f′(x)=3x2-2ax+2b,
∵函數f′(x)的圖象關于直線x=2對稱,
∴$\frac{2a}{6}$=2,即a=6.
∴f(x)=$\frac{1}{3}$x3-6x2+3bx-2
∵f(x)≥-2在[1,3]上恒成立,
即$\frac{1}{3}$x3-6x2+2bx+1≥-2在[1,3]上恒成立,
∴2b≥-$\frac{1}{3}$x2+6x-$\frac{3}{x}$在[1,3]上恒成立,
令g(x)=-$\frac{1}{3}$x2+6x-$\frac{3}{x}$,x∈[1,3],
∴g′(x)=-$\frac{2}{3}$x+6+$\frac{3}{{x}^{2}}$>0在1,3]上恒成立,
∴g(x)在[1,3]上單調遞增,
∴g(x)max=g(3)=14,
∴2b≥14,
∴b≥7,
故b的范圍為[7,+∞),
故答案為:[7,+∞)
點評 本題考查了利用導數研究函數的最值,利用導數研究函數的單調性,函數的單調性與導數的正負有關.本題還考查了函數的恒成立問題,一般選用參變量分離的方法進行處理,轉化成求函數的最值問題.屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{3}$-1 | C. | $\frac{{\sqrt{3}-1}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{35}{8}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com