日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

20.已知函數(shù)f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.
(1)當(dāng)a=1時,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范圍.

分析 (1)當(dāng)a=1時,f(x)=-x2+x+4,g(x)=|x+1|+|x-1|=$\left\{\begin{array}{l}{2x,x>1}\\{2,-1≤x≤1}\\{-2x,x<-1}\end{array}\right.$,分x>1、x∈[-1,1]、x∈(-∞,-1)三類討論,結(jié)合g(x)與f(x)的單調(diào)性質(zhì)即可求得f(x)≥g(x)的解集為[-1,$\frac{\sqrt{17}-1}{2}$];
(2)依題意得:-x2+ax+4≥2在[-1,1]恒成立?x2-ax-2≤0在[-1,1]恒成立,只需$\left\{\begin{array}{l}{{1}^{2}-a•1-2≤0}\\{{(-1)}^{2}-a(-1)-2≤0}\end{array}\right.$,解之即可得a的取值范圍.

解答 解:(1)當(dāng)a=1時,f(x)=-x2+x+4,是開口向下,對稱軸為x=$\frac{1}{2}$的二次函數(shù),
g(x)=|x+1|+|x-1|=$\left\{\begin{array}{l}{2x,x>1}\\{2,-1≤x≤1}\\{-2x,x<-1}\end{array}\right.$,
當(dāng)x∈(1,+∞)時,令-x2+x+4=2x,解得x=$\frac{\sqrt{17}-1}{2}$,g(x)在(1,+∞)上單調(diào)遞增,f(x)在(1,+∞)上單調(diào)遞減,∴此時f(x)≥g(x)的解集為(1,$\frac{\sqrt{17}-1}{2}$];
當(dāng)x∈[-1,1]時,g(x)=2,f(x)≥f(-1)=2.
當(dāng)x∈(-∞,-1)時,g(x)單調(diào)遞減,f(x)單調(diào)遞增,且g(-1)=f(-1)=2.
綜上所述,f(x)≥g(x)的解集為[-1,$\frac{\sqrt{17}-1}{2}$];
(2)依題意得:-x2+ax+4≥2在[-1,1]恒成立,即x2-ax-2≤0在[-1,1]恒成立,則只需$\left\{\begin{array}{l}{{1}^{2}-a•1-2≤0}\\{{(-1)}^{2}-a(-1)-2≤0}\end{array}\right.$,解得-1≤a≤1,
故a的取值范圍是[-1,1].

點(diǎn)評 本題考查絕對值不等式的解法,去掉絕對值符號是關(guān)鍵,考查分類討論思想與等價轉(zhuǎn)化思想的綜合運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{3x+2y-6≤0}\\{x≥0}\\{y≥0}\end{array}\right.$則z=x-y的取值范圍是(  )
A.[-3,0]B.[-3,2]C.[0,2]D.[0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x∈R|0≤x≤2},集合N={x∈R|x2≤1},則M∪N=(  )
A.(0,1]B.[0,2]C.[-1,2]D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知拋物線x2=y,點(diǎn)A(-$\frac{1}{2}$,$\frac{1}{4}$),B($\frac{3}{2}$,$\frac{9}{4}$),拋物線上的點(diǎn)P(x,y)(-$\frac{1}{2}$<x<$\frac{3}{2}$),過點(diǎn)B作直線AP的垂線,垂足為Q.
(Ⅰ)求直線AP斜率的取值范圍;
(Ⅱ)求|PA|•|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.記Sn為等比數(shù)列{an}的前n項和.已知S2=2,S3=-6.
(1)求{an}的通項公式;
(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在矩形ABCD中,AB=1,AD=2,動點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,則λ+μ的最大值為(  )
A.3B.2$\sqrt{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線C:y2=2x,過點(diǎn)(2,0)的直線l交C與A,B兩點(diǎn),圓M是以線段AB為直徑的圓.
(1)證明:坐標(biāo)原點(diǎn)O在圓M上;
(2)設(shè)圓M過點(diǎn)P(4,-2),求直線l與圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=x3-2x+ex-$\frac{1}{{e}^{x}}$,其中e是自然對數(shù)的底數(shù).若f(a-1)+f(2a2)≤0.則實數(shù)a的取值范圍是[-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,曲線y=x2+mx-2與x軸交于A、B兩點(diǎn),點(diǎn)C的坐標(biāo)為(0,1),當(dāng)m變化時,解答下列問題:
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A、B、C三點(diǎn)的圓在y軸上截得的弦長為定值.

查看答案和解析>>
主站蜘蛛池模板: 欧美一级艳片视频免费观看 | 精品久久久久久久久久久久久久 | 日韩精品亚洲一区 | 亚洲精品一区二区三区四区高清 | 国产成人涩涩涩视频在线观看 | 精品免费视频一区二区 | 久久久久久久一区 | 黄色网址在线免费观看 | 欧美午夜精品久久久久免费视 | 亚洲骚片 | 精品久久久久久久久久久久久久 | 亚洲成人av在线 | h免费在线观看 | 国产精品一区二区三区不卡 | 99久久精品免费看国产免费软件 | 99国产精品久久久久久久 | 久久精品欧美一区二区三区不卡 | 日韩福利| 欧洲亚洲视频 | 国产一区二区美女 | 国产精品一区2区 | 一区二区三区欧美 | heyzo在线观看 | 黄色av网站在线免费观看 | 欧美一区二区三区视频 | 精品国产乱码久久久久久久软件 | 日韩超碰在线观看 | 黄色毛片视频在线观看 | 国产成人在线网站 | 欧美精品一区二区三区在线 | 中文在线a在线 | 一区二区三区视频 | 男人的天堂免费 | 偷派自拍| 日韩精品在线一区二区 | 欧美国产视频 | 日日骚视频 | 国产精品美女久久久久久久久久久 | 亚洲国产成人精品久久 | 国产欧美日韩综合 | 久久蜜桃av一区二区天堂 |