日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
2.設函數f(x)=ln(1+x),g(x)=a•$\frac{{{x^2}+2x}}{1+x}$(a∈R).
(1)若函數h(x)=f(x)-g(x)在定義域內單調遞減,求a的取值范圍;
(2)設n∈N*,證明:(1+$\frac{1}{n^2}}$)(1+$\frac{2}{n^2}}$)…(1+$\frac{n}{n^2}}$)<e${\;}^{\frac{1}{4}}}$(e為自然對數的底數).

分析 (1)求出函數的導數,解關于導函數的不等式,問題轉化為$a≥{({\frac{1+x}{{{x^2}+2x+2}}})_{max}}$,根據函數的單調性求出a的范圍即可;
(2)取a=$\frac{1}{2}$,根據$ln({1+x})<\frac{1}{2}•\frac{{{x^2}+2x}}{1+x}$對x∈(0,+∞),均成立,令$x=\frac{k}{n^2}({k=1,2,…,n})$,作和證出結論即可.

解答 (1)解:函數h(x)的定義域為(-1,+∞),
且$h(x)=f(x)-g(x)=ln({1+x})-a•\frac{{{x^2}+2x}}{1+x}$,
則$h'(x)=\frac{1}{1+x}-a•\frac{{({2x+2})({1+x})-({{x^2}+2x})}}{{({1+{x^2}})}}=\frac{{({1+x})-a•({{x^2}+2x+2})}}{{({1+{x^2}})}}$,
由于h(x)在(-1,+∞)內單調遞減,
則h'(x)≤0對x∈(-1,+∞)恒成立,
即(1+x)-a•(x2+2x+2)≤0對x∈(-1,+∞)恒成立,…(2分)
從而$a≥{({\frac{1+x}{{{x^2}+2x+2}}})_{max}}$,則$a≥{({\frac{1}{{1+x+\frac{1}{1+x}}}})_{max}}=\frac{1}{2}$,
故a的取值范圍為$[{\frac{1}{2},+∞})$…(4分)
(2)證明:取$a=\frac{1}{2}$,由第(1)問可知h(x)在(0,+∞)為單調遞減函數,
從而h(x)<h(0)=0;
則$ln({1+x})<\frac{1}{2}•\frac{{{x^2}+2x}}{1+x}$對x∈(0,+∞),均成立,…(6分)
令$x=\frac{k}{n^2}({k=1,2,…,n})$,
有$ln({1+\frac{k}{n^2}})<\frac{1}{2}•\frac{{{{({\frac{k}{n^2}})}^2}+2•\frac{k}{n^2}}}{{1+\frac{k}{n^2}}}=\frac{1}{2}({\frac{k}{n^2}+\frac{k}{{{n^2}+k}}})≤\frac{1}{2}({\frac{k}{n^2}+\frac{k}{{{n^2}+1}}})$;…(9分)
從而$ln[{({1+\frac{1}{n^2}})({1+\frac{2}{n^2}})…({1+\frac{n}{n^2}})}]$
=$ln({1+\frac{1}{n^2}})+ln({1+\frac{2}{n^2}})+…+ln({1+\frac{n}{n^2}})<\frac{1}{2}({\frac{1}{n^2}+\frac{2}{n^2}+…+\frac{n}{n^2}+\frac{1}{{{n^2}+1}}+\frac{2}{{{n^2}+1}}+…+\frac{n}{{{n^2}+1}}})$
=$\frac{1}{4}[{3-\frac{{n{{({n-1})}^2}+({n-1})}}{{n({{n^2}+1})}}}]≤\frac{3}{4}$,
故$({1+\frac{1}{n^2}})({1+\frac{2}{n^2}})…({1+\frac{n}{n^2}})<{e^{\frac{3}{4}}}$…(12分)

點評 本題考查了函數的單調性、最值問題,考查導數的應用以及不等式的證明,是一道綜合題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

12.數列{an}滿足:a1=1,且對任意的m,n∈N*都有:an+m=an+am+nm,則a100=5050.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知f(x)=$\left\{\begin{array}{l}{2x-1(x≥2)}\\{-{x}^{2}+3x(x<2)}\end{array}\right.$,則f(-4)+f(4)的值為(  )
A.-21B.-32C.-2D.0

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.“龜兔賽跑”是一則經典故事:兔子與烏龜在賽道上賽跑,跑了一段后,兔子領先太多就躺在道邊睡著了,當他醒來后看到烏龜已經領先了,因此他用更快的速度去追,結果還是烏龜先到了終點,請根據故事選出符合的路程一時間圖象(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知函數f(x)=xlnx+et-a,若對任意的t∈[0,1],f(x)在(0,e)上總有唯一的零點,則a的取值范圍是(  )
A.$[e-\frac{1}{e},e)$B.[1,e+1)C.[e,e+1)D.$(e-\frac{1}{e},e+1)$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.某班學生父母年齡的莖葉圖如圖,左邊是父親年齡,右邊是母親年齡,則該班同學父親的平均年齡比母親的平均年齡大(  )
A.2.7歲B.3.1歲C.3.2歲D.4歲

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.下列關系式中,正確的是(  )
A.∅∈{0}B.0⊆{0}C.0∈{0}D.∅={0}

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.求下列函數的定義域:
(1)f(x)=$\frac{6}{{x}^{2}-3x+2}$;
(2)f(x)=$\frac{\sqrt{4-x}}{x-1}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.滿足不等式m2-4m-12≤0的實數m使關于x的一元二次方程x2-4x+m2=0有實數根的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 91色在线观看 | 男女羞羞视频在线观看免费 | 在线免费视频一区 | 国产精品九九九 | 一级在线观看 | 日韩福利在线观看 | 69久久99精品久久久久婷婷 | 日韩一区二区不卡 | 国产免费视频在线 | 久久草草影视免费网 | 欧美精品综合 | 精品欧美乱码久久久久久 | 青青草中文字幕 | 成人免费观看在线视频 | 草草久久久 | 色黄网站| 2019天天操 | 中文字幕在线观 | 精品免费| 免费黄色片一区二区 | 免费的黄色影片 | 成人在线播放 | 日本中文字幕在线视频 | 亚洲一区二区免费 | 亚洲乱码国产乱码精品精 | 国产噜噜噜噜噜久久久久久久久 | 成人三级影院 | 91国产精品入口 | 中文字幕av一区二区三区免费看 | 国产成人在线免费观看 | 日本精品久久久一区二区三区 | 国产av毛片| 成av在线| 日韩av在线中文字幕 | 亚洲电影一级片 | 青草成人免费视频 | av在线片 | 欧美一级精品片在线看 | 岛国精品 | 九九九色 | 午夜免费看视频 |