分析 (Ⅰ)通過Sn=2an-n(n∈N+)與Sn-1=2an-1-(n-1)(n≥2)作差、變形可知an+1=2(an-1+1),進而計算即得結論.
(Ⅱ)利用$\frac{{a}_{k}}{{a}_{k+1}}=\frac{{2}^{k}-1}{{2}^{k+1}-1}<\frac{{2}^{k}-1}{{2}^{k+1}-2}=\frac{1}{2}$,(k=1,2,…n),$\frac{{a}_{k}}{{a}_{k+1}}=\frac{{2}^{k}-1}{{2}^{k+1}-1}=\frac{1}{2}-\frac{1}{2({2}^{k+1}-1)}$=$\frac{1}{2}$-$\frac{1}{3•{2}^{k}+{2}^{k}-2}$$≥\frac{1}{2}-\frac{1}{3•{2}^{k}}$(k=1,2,…n),可證明,$\frac{n}{2}$$-\frac{1}{3}$$<\frac{{a}_{1}}{{a}_{2}}$$+\frac{{a}_{2}}{{a}_{3}}$+…$+\frac{{a}_{n}}{{a}_{n+1}}$$<\frac{n}{2}$(n∈N*).
解答 解:(Ⅰ)∵Sn=2an-n(n∈N+),
∴Sn-1=2an-1-n+1=0(n≥2),
兩式相減得:an=2an-1+1,
變形可得:an+1=2(an-1+1),
又∵a1=2a1-1,即a1=1,
∴數列{an+1}是首項為2、公比為2的等比數列,
∴an+1=2•2n-1=2n,an=2n-1.
(Ⅱ)由$\frac{{a}_{k}}{{a}_{k+1}}=\frac{{2}^{k}-1}{{2}^{k+1}-1}<\frac{{2}^{k}-1}{{2}^{k+1}-2}=\frac{1}{2}$,(k=1,2,…n),
∴$\frac{{a}_{1}}{{a}_{2}}+\frac{{a}_{2}}{{a}_{3}}+…+\frac{{a}_{n}}{{a}_{n+1}}<\frac{1}{2}×n$=$\frac{n}{2}$,
由$\frac{{a}_{k}}{{a}_{k+1}}=\frac{{2}^{k}-1}{{2}^{k+1}-1}=\frac{1}{2}-\frac{1}{2({2}^{k+1}-1)}$=$\frac{1}{2}$-$\frac{1}{3•{2}^{k}+{2}^{k}-2}$$≥\frac{1}{2}-\frac{1}{3•{2}^{k}}$,(k=1,2,…n),
得$\frac{{a}_{1}}{{a}_{2}}+\frac{{a}_{2}}{{a}_{3}}+…+\frac{{a}_{n}}{{a}_{n+1}}$$>\frac{n}{2}$-$\frac{1}{3}(\frac{1}{2}+\frac{1}{{2}^{2}}+..+\frac{1}{{2}^{n}})$=$\frac{n}{2}-\frac{1}{3}(1-\frac{1}{{2}^{n}})$$>\frac{n}{2}-\frac{1}{3}$,
綜上,$\frac{n}{2}$$-\frac{1}{3}$$<\frac{{a}_{1}}{{a}_{2}}$$+\frac{{a}_{2}}{{a}_{3}}$+…$+\frac{{a}_{n}}{{a}_{n+1}}$$<\frac{n}{2}$(n∈N*).
點評 本題考查了利用數列遞推式求通項,考查了放縮法證明數列不等式,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{4\sqrt{3}+3}{10}$ | B. | $\frac{4\sqrt{3}-3}{10}$ | C. | -$\frac{4\sqrt{3}+3}{10}$ | D. | $\frac{4-3\sqrt{3}}{10}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com