分析 設冪函數f(x)=xα,把點(2,8)代入函數的解析式,求得α的值,即可得到函數的解析式,從而求出f(3)的值,求出g(x)的導數,得到函數的單調性,根據零點定理得到g(2)<0且g(3)>0,解出即可.
解答 解:設冪函數f(x)=xα,
把點(2,8)代入函數的解析式可得2α=8,
解得 α=3,故函數的解析式為f(x)=x3,
故f(3)=27,
g(x)=f(x)+x-m=x3+x-m,
g′(x)=3x2+1>0,
故g(x)在(2,3)遞增,
若函數g(x)在(2,3)上有零點,
只需$\left\{\begin{array}{l}{g(2)=10-m<0}\\{g(3)=30-m>0}\end{array}\right.$,
解得:10<m<30,
故答案為:27,10<m<30.
點評 本題考查了冪函數的定義,考查函數的零點問題以及導數的應用,是一道中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 20($\sqrt{2}$+$\sqrt{6}$)海里/時 | B. | 20($\sqrt{6}$-$\sqrt{2}$)海里/時 | C. | 20($\sqrt{3}$+$\sqrt{6}$)海里/時 | D. | 20($\sqrt{6}$-$\sqrt{3}$)海里/時 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a>b>c | B. | c>a>b | C. | a>c>b | D. | c>b>a |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x1)<f(x2) | B. | f(x1)>f(x2) | ||
C. | f(x1)=f(x2) | D. | f(x1)<f(x2)和f(x1)=f(x2)都有可能 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com