分析 ${\vec e_1}$,${\vec e_2}$為單位向量,且夾角為60°,不妨取:$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=$(\frac{1}{2},\frac{\sqrt{3}}{2})$.利用$\vec a$在$\vec b$方向上的投影=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}$=2,即可得出.
解答 解:∵${\vec e_1}$,${\vec e_2}$為單位向量,且夾角為60°,
不妨取:$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=$(\frac{1}{2},\frac{\sqrt{3}}{2})$.
∴$\overrightarrow{a}$=$(2,\frac{3\sqrt{3}}{2})$,$\overrightarrow{b}$=(2,0),
∴$\overrightarrow{a}•\overrightarrow{b}$=4,$|\overrightarrow{b}|$=2.
則$\vec a$在$\vec b$方向上的投影=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}$=2,
故答案為:2.
點評 本題考查了向量數量積運算性質、向量的投影,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | ${e}^{{x}_{1}}$f(x2)>${e}^{{x}_{2}}$ex2f(x1) | |
B. | ${e}^{{x}_{1}}$f(x2)<${e}^{{x}_{2}}$f(x1) | |
C. | ${e}^{{x}_{1}}$f(x2)=${e}^{{x}_{2}}$f(x1) | |
D. | ${e}^{{x}_{1}}$f(x2)與${e}^{{x}_{2}}$f(x1)的大小關系不確定 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com