【題目】雙曲線
的左、右焦點(diǎn)分別為
,過(guò)
作傾斜角為
的直線與
軸和雙曲線的右支分別交于
兩點(diǎn),若點(diǎn)
平分線段
,則該雙曲線的離心率是( )
A. B.
C. 2 D.
【答案】B
【解析】雙曲線
的左焦點(diǎn)
為
,直線
的方程為
,令
,則
,即
,因?yàn)?/span>
平分線段
,根據(jù)中點(diǎn)坐標(biāo)公式可得
,代入雙曲線方程,可得
,由于
,則
,化簡(jiǎn)可得
,解得
,由
,解得
,故選B.
【方法點(diǎn)晴】本題主要考查利用雙曲線的簡(jiǎn)單性質(zhì)求雙曲線的離心率,屬于中檔題.求解與雙曲線性質(zhì)有關(guān)的問(wèn)題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、實(shí)軸、虛軸、漸近線等雙曲線的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問(wèn)題應(yīng)先將 用有關(guān)的一些量表示出來(lái),再利用其中的一些關(guān)系構(gòu)造出關(guān)于
的等式,從而求出
的值.本題是利用點(diǎn)到直線的距離等于圓半徑構(gòu)造出關(guān)于
的等式,最后解出
的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓
(
),圓
(
),若圓
的一條切線
與橢圓
相交于
兩點(diǎn).
(1)當(dāng),
時(shí),若點(diǎn)
都在坐標(biāo)軸的正半軸上,求橢圓
的方程;
(2)若以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)
,探究
是否滿足
,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)如圖,在多面體中,
是正方形,
平面
,
平面
,
,點(diǎn)
為棱
的中點(diǎn).
(1)求證:平面平面
;
(2)若,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙二人約定某日早上在某處會(huì)面,甲在內(nèi)某一時(shí)刻隨機(jī)到達(dá),乙在
內(nèi)某一時(shí)刻隨機(jī)到達(dá),則甲至少需等待乙5分鐘的概率是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代十進(jìn)制的算籌計(jì)數(shù)法,在世界數(shù)學(xué)史上是一個(gè)偉大的創(chuàng)造,算籌實(shí)際上是一根根同樣長(zhǎng)短的小木棍,如圖,算籌表示數(shù)1~9的方法的一種.
例如:163可表示為“”27可表示為“
”問(wèn)現(xiàn)有8根算籌可以表示三位數(shù)的個(gè)數(shù)(算籌不能剩余)為( )
A. 48 B. 60 C. 96 D. 120
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)的最小正周期;
(2)常數(shù),若函數(shù)
在區(qū)間
上是增函數(shù),求
的取值范圍;
(3)若函數(shù)在
的最大值為2,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.一個(gè)人打靶,打了10發(fā)子彈,有7發(fā)子彈中靶,因此這個(gè)人中靶的概率為
B.某地發(fā)行福利彩票,其回報(bào)率為,有個(gè)人花了100元錢買彩票,一定會(huì)有47元回報(bào)
C.根據(jù)最小二乘法求得的回歸直線一定經(jīng)過(guò)樣本中心點(diǎn)
D.大量試驗(yàn)后,可以用頻率近似估計(jì)概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定集合(
且
),定義點(diǎn)集
,若對(duì)任意點(diǎn)
,存在
,使得
(
為坐標(biāo)原點(diǎn)).則稱集合
具有性質(zhì)
,給出一下四個(gè)結(jié)論:
①其有性質(zhì)
;
②具有性質(zhì)
;
③若集合具有性質(zhì)
,則
中一定存在兩數(shù)
,使得
;
④若集合具有性質(zhì)
.
是
中任一數(shù),則在
中一定存在
,使得
.
其中正確結(jié)論有___________(填上你認(rèn)為所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】是偶函數(shù),
(1) 求的值;
(2)當(dāng)時(shí),設(shè)
,若函數(shù)
與
的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com