日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

3.已知點(diǎn)M到定點(diǎn)F(1,0)和定直線x=4的距離之比為$\frac{1}{2}$,設(shè)動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)P(4,0),過(guò)點(diǎn)F作斜率不為0的直線l與曲線C交于兩點(diǎn)A,B,設(shè)直線PA,PB的斜率分別是k1,k2,求k1+k2的值.

分析 (1)設(shè)點(diǎn)M(x,y),利用條件可得等式$\sqrt{(x-1)^{2}+{y}^{2}}$=$\frac{1}{2}$|x-4|,化簡(jiǎn),可得曲線C的軌跡方程;
(2)設(shè)直線l的方程為:x=my+1,A(x1,y1),B(x2,y2).聯(lián)立$\left\{\begin{array}{l}{x=my+1}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$得:(4+3m2)y2+6my-9=0.${k}_{1}+{k}_{2}=\frac{{y}_{1}}{{x}_{1}-4}+\frac{{y}_{2}}{{x}_{2}-4}$=$\frac{{y}_{1}({x}_{2}-4)+{y}_{2}({x}_{1}-4)}{({x}_{1}-4)({x}_{2}-4)}$=$\frac{2m{y}_{1}{y}_{2}-3({y}_{1}+{y}_{2})}{{m}^{2}{y}_{1}{y}_{2}-3m({y}_{1}+{y}_{2})+9}$

解答 解:(1)設(shè)點(diǎn)M(x,y),則據(jù)題意有$\sqrt{(x-1)^{2}+{y}^{2}}$=$\frac{1}{2}$|x-4|
則4[(x-1)2+y2]=(x-4)2,即3x2+4y2=12,∴$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$
曲線C的方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)設(shè)直線l的方程為:x=my+1,A(x1,y1),B(x2,y2).
聯(lián)立$\left\{\begin{array}{l}{x=my+1}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$得:(4+3m2)y2+6my-9=0,${y}_{1}{y}_{2}=\frac{-9}{3{m}^{2}+4},{y}_{1}+{y}_{2}=\frac{-6m}{3+4{m}^{2}}$.
${k}_{1}+{k}_{2}=\frac{{y}_{1}}{{x}_{1}-4}+\frac{{y}_{2}}{{x}_{2}-4}$=$\frac{{y}_{1}({x}_{2}-4)+{y}_{2}({x}_{1}-4)}{({x}_{1}-4)({x}_{2}-4)}$=$\frac{2m{y}_{1}{y}_{2}-3({y}_{1}+{y}_{2})}{{m}^{2}{y}_{1}{y}_{2}-3m({y}_{1}+{y}_{2})+9}$=0.
k1+k2的值為0

點(diǎn)評(píng) 本題考查了直線與橢圓的位置關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=|x+b2|-|-x+1|,g(x)=|x+a2+c2|+|x-2b2|,其中a,b,c均為正實(shí)數(shù),且ab+bc+ac=1.
(Ⅰ)當(dāng)b=1時(shí),求不等式f(x)≥1的解集;
(Ⅱ)當(dāng)x∈R時(shí),求證f(x)≤g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦點(diǎn)F為拋物線y2=-4x的焦點(diǎn),過(guò)點(diǎn)F做x軸的垂線交橢圓于A,B兩點(diǎn),且|AB|=3.
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若M,N為橢圓上異于點(diǎn)A的兩點(diǎn),且滿足$\frac{{\overrightarrow{AM}•\overrightarrow{AF}}}{{\overrightarrow{|{AM}|}}}=\frac{{\overrightarrow{AN}•\overrightarrow{AF}}}{{\overrightarrow{|{AN}|}}}$,問(wèn)直線MN的斜率是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積是(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{\frac{x}{3}+\frac{y}{4}≤1}\end{array}\right.$,則x-2y的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知F1(0,-1),F(xiàn)2(0,1)是橢圓的兩個(gè)焦點(diǎn),過(guò)F1的直線l交橢圓于M,N兩點(diǎn),若△MF2N的周長(zhǎng)為8,則橢圓方程為(  )
A.$\frac{{y}^{2}}{16}$+$\frac{{x}^{2}}{15}$=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1D.$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)一圓錐的外接球與內(nèi)切球的球心位置相同,且外接球的半徑為2,則該圓錐的體積為(  )
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$滿足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$,若向量$\overrightarrow{c}$滿足|$\overrightarrow{a}$-$\overrightarrow{b}$+$\overrightarrow{c}$|≤1,則|$\overrightarrow{c}$|的最大值為(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若函數(shù)f(x)=ax2+2x+blnx在x=1和x=2處取得極值,
(1)求a,b的值;
(2)求f(x)在$[\frac{1}{2},2]$上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 一区二区三区成人 | 免费网站黄 | 国产一级片免费观看 | 亚洲日本精品 | 一区二区视频在线播放 | 偷偷操网站 | 大尺度做爰呻吟舌吻网站 | 三级在线播放 | 亚洲精品一 | 久久久高清| 97人人看 | 欧美一级网站 | 亚洲天堂久久 | 日本中文在线观看 | 久久国产影院 | 国产精品美女在线观看 | 中文字幕亚洲天堂 | 亚洲激情视频在线 | 欧美成人极品 | 九九九热| 亚洲在线一区 | 亚洲综合五月天婷婷丁香 | 国产乱码一区二区 | www.色综合 | 精品日韩在线观看 | 五月天精品 | 精品一区二区三区在线观看 | 欧美日韩一区二区在线 | 国产精品视频免费 | 婷婷视频在线 | 国产精品日韩欧美 | 日日干视频 | 91视频色| 久久99精品久久久久久国产越南 | 日韩精品中文字幕在线观看 | 亚洲高清在线 | 国产三级在线观看视频 | 国产一区在线播放 | 色婷婷av一区二区三区之e本道 | 超碰成人免费 | 欧美又大粗又爽又黄大片视频 |