分析 (Ⅰ)根據投資1萬元時兩種產品收益分別是0.4萬元,0.2萬元,寫出兩類產品的收益與投資額的函數關系式;
(Ⅱ)確定h(x)=f(x)+g(10-x)=0.4$\sqrt{x}+0.2({10-x})=-0.2x+0.4\sqrt{x}$+2=$-0.2(\sqrt{x}-1)^{2}+2.2$,即可得出結論.
解答 解:(Ⅰ)由題意:
設投資A產品收益f(x)與投資額x的函數關系式為f(x)=m$\sqrt{x}$,
投資B產品收益g(x)與投資額x的函數關系式為g(x)=kx…(2分)
因為投資1萬元時兩種產品收益分別是0.4萬元,0.2萬元,所以0.4=m$\sqrt{1}$,0.2=k•1,
∴m=0.4,k=0.2…(4分)
兩種產品的收益與投資額函數關系分別是:f(x)=0.4$\sqrt{x}$,g(x)=0.2x…(5分)
(Ⅱ)設10萬元中有x萬元用于投資A產品,那么10-x萬元用于投資B產品,
則0≤x≤10,設投資兩種產品后總收益為h(x)
所以h(x)=f(x)+g(10-x)
=0.4$\sqrt{x}+0.2({10-x})=-0.2x+0.4\sqrt{x}$+2=$-0.2(\sqrt{x}-1)^{2}+2.2$…(9分)
∵0≤x≤10∴0≤$\sqrt{x}≤\sqrt{10}$
所以當$\sqrt{x}$=1即x=1時,h(x)取得最大值h(1)=2.2
所以:當投資A產品1萬元,B產品9萬元時,最大收益為2.2萬元…(12分)
點評 本題考查利用數學知識解決實際問題,考查二次函數的性質,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ($\frac{1}{3}$,1) | B. | [$\frac{1}{3}$,1) | C. | (0,$\frac{1}{3}$) | D. | (0,$\frac{1}{3}$] |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com