分析 (1)根據使函數解析式有意義的原則,可得函數的定義域;
(2)證法一:任取x1,x2∈R,且0<x1<x2,作差判斷出f(x1)-f(x2)<0,結合單調性的定義,可得:函數f(x)在R是增函數;
證法二:求導,根據當x∈(0,+∞)時,f′(x)>0恒成立,可得:函數f(x)在R是增函數.
(3)要使函數是奇函數,需要使f(-x)+f(x)=0,解得k值.
解答 解:(1)要使函數f(x)=k-$\frac{1}{x}$有意義,顯然,只需x≠0
∴該函數的定義域是{x∈R|x≠0}…(3分)
證明:(2)
證法一:在區間(0,+∞)上任取x1,x2且令0<x1<x2,
則:f(x1)-f(x2)=($k-\frac{1}{{x}_{1}}$)($k-\frac{1}{{x}_{2}}$)=$\frac{{x}_{1}{-x}_{2}}{{x}_{1}{x}_{2}}$ …(5分)
∵0<x1<x2,
∴x1•x2>0,x1-x2<0,
∴f(x1)-f(x2)<0,
則函數f(x)在這個區間(0,+∞)上是增函數…(8分)
證法二:∵f(x)=k-$\frac{1}{x}$,
∴f′(x)=$\frac{1}{{x}^{2}}$,
當x∈(0,+∞)時,
f′(x)>0恒成立,
所以函數f(x)在這個區間(0,+∞)上是增函數…(8分)
(3)由(1)知,函數的定義域關于原點對稱.
要使函數是奇函數,需要使f(-x)+f(x)=0…(10分)
則,得:2k=0,即k=0
∴當k=0時,函數是奇函數.…(12分)
點評 本題考查的知識點是函數的單調性,函數的奇偶性,利用導數研究函數的單調性,難度中檔.
科目:高中數學 來源: 題型:選擇題
A. | [0,2] | B. | [0,16] | C. | [-2,2] | D. | [-2,0] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)=-1-2x | B. | f(x)=1+2x | C. | f(x)=-1+2x | D. | f(x)=1-2x |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2x+y-3=0 | B. | x+y-1=0 | C. | x-y-3=0 | D. | 2x-y-5=0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 2$\sqrt{5}$ | C. | $\frac{3\sqrt{7}}{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com