分析 利用同角三角函數基本關系,求出sinα=$\frac{2}{\sqrt{5}}$,cosα=$\frac{1}{\sqrt{5}}$,即可得出結論.
解答 解:∵tanα=2,α為第一象限角,
∴sinα=$\frac{2}{\sqrt{5}}$,cosα=$\frac{1}{\sqrt{5}}$,
∴sin2α+cosα=2$•\frac{2}{\sqrt{5}}•\frac{1}{\sqrt{5}}$+$\frac{\sqrt{5}}{5}$=$\frac{4}{5}$+$\frac{\sqrt{5}}{5}$,
故答案為:$\frac{4}{5}$+$\frac{\sqrt{5}}{5}$.
點評 此題考查了同角三角函數基本關系的運用,熟練掌握基本關系是解本題的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4π | B. | 8π | C. | 16π | D. | 32π |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com