分析 (1)令bn=an+1-an+3,可得bn+1=an+2-an+1+3=2(an+1-an+3)=2bn,利用等比數列的定義即可證明.
(2)由(1)利用等比數列的通項公式可得bn,即可得出an.
解答 (1)證明:令bn=an+1-an+3,
∴bn+1=an+2-an+1+3
=2an+1+3(n+1)-4-2an-3n+4+3
=2(an+1-an+3)=2bn,
∵b1=1
∴$\frac{bn+1}{bn}$=2,
∴數列{bn}是公比為2的等比數列.
(2)解:由已知a2=2a1-1=-3,
故b1=a2-a1+3=1⇒bn=an+1-a+3=2n-1
⇒2an+3n-4-an+3=2n-1
⇒an=2n-1-3n+1(n∈N*).
點評 本題考查了等比數列的定義及其通項公式、數列遞推關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | f(x)=x-1,g(x)=$\frac{x^2}{x}$-1 | B. | f(x)=2x-1,g(x)=2x+1 | ||
C. | f(x)=x2,g(x)=$\root{3}{{x}^{6}}$ | D. | f(x)=1,g(x)=x0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [$\frac{2}{3}$,5] | B. | [$\frac{3}{2}$,11] | C. | [$\frac{1}{5}$,$\frac{2}{3}$] | D. | [$\frac{1}{5}$,$\frac{3}{2}$] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | -$\sqrt{5}$ | D. | -$\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com