日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

10.已知數(shù)列{an},{bn}滿足a1=1,b1=2,an+1=$\sqrt{{a_n}{b_n}}$,bn+1=$\frac{{{a_n}+{b_n}}}{2}$,
(1)求證:當n≥2時,an-1≤an≤bn≤bn-1
(2)設(shè)Sn為數(shù)列{|an-bn|}的前n項和,求證:Sn<$\frac{10}{9}$.

分析 (1)利用遞推關(guān)系代入,通過作差bn-an=$\frac{(\sqrt{{b}_{n-1}}-\sqrt{{a}_{n-1}})^{2}}{2}$,可得${b_n}≥{a_n}({n∈{N^*}})$.可得${a_n}=\sqrt{{a_{n-1}}{b_{n-1}}}≥{a_{n-1}}$,${b_n}=\frac{{{a_{n-1}}+{b_{n-1}}}}{2}≤{b_{n-1}}$,即可證明.
(2)由(1)知:$\sqrt{\frac{b_n}{a_n}}≤\sqrt{\frac{{{b_{n-1}}}}{{{a_{n-1}}}}}≤…≤\sqrt{\frac{b_1}{a_1}}=\sqrt{2}<\frac{3}{2}$,可得$({\sqrt{b_n}-\sqrt{a_n}})≤\frac{1}{5}({\sqrt{b_n}+\sqrt{a_n}})?2\sqrt{b_n}≤3\sqrt{a_n}$.進而得出:
|an-bn|≤$\frac{1}{10}$|bn-1-an-1|,通過遞推即可證明.

解答 證明:(1)當n≥2時,${b_n}-{a_n}=\frac{{{a_{n-1}}+{b_{n-1}}}}{2}-\sqrt{{a_{n-1}}{b_{n-1}}}=\frac{{{{({\sqrt{{b_{n-1}}}-\sqrt{{a_{n-1}}}})}^2}}}{2}≥0$,
故有${b_n}≥{a_n}({n∈{N^*}})$.
∴${a_n}=\sqrt{{a_{n-1}}{b_{n-1}}}≥{a_{n-1}}$,${b_n}=\frac{{{a_{n-1}}+{b_{n-1}}}}{2}≤{b_{n-1}}$,
∴當n≥2時,an-1≤an≤bn≤bn-1
(2)由(1)知:$\sqrt{\frac{b_n}{a_n}}≤\sqrt{\frac{{{b_{n-1}}}}{{{a_{n-1}}}}}≤…≤\sqrt{\frac{b_1}{a_1}}=\sqrt{2}<\frac{3}{2}$,
$({\sqrt{b_n}-\sqrt{a_n}})≤\frac{1}{5}({\sqrt{b_n}+\sqrt{a_n}})?2\sqrt{b_n}≤3\sqrt{a_n}$.
故$|{{a_n}-{b_n}}|=|{\frac{{{a_{n-1}}+{b_{n-1}}}}{2}-\sqrt{{a_{n-1}}{b_{n-1}}}}|=\frac{{{{({\sqrt{{b_{n-1}}}-\sqrt{{a_{n-1}}}})}^2}}}{2}$$≤\frac{{({\sqrt{{b_{n-1}}}-\sqrt{{a_{n-1}}}})({\sqrt{{b_{n-1}}}+\sqrt{{a_{n-1}}}})}}{10}=\frac{{|{{b_{n-1}}-{a_{n-1}}}|}}{10}$,
故${S_n}≤1+\frac{1}{10}+…+\frac{1}{{{{10}^n}}}<\frac{10}{9}$.

點評 本題考查了不等式的性質(zhì)、數(shù)列遞推關(guān)系、作差法、放縮法,考查了推理能力與計算能力,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知圓C的極坐標方程為ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,若直線 l:$\left\{\begin{array}{l}kx=-2+t\\ 2y=-2-2t\end{array}$(t為參數(shù))與圓C相切.求
(1)圓C的直角坐標方程; 
(2)實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知f(x)=$\frac{1}{x}$,則$\underset{lim}{△x→∞}$$\frac{f(2+△x)-f(2)}{△x}$的值是(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.2D.ln2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知(x,y)在映射f下的像是(x+y,x-y),則像(4,1)在映射f下的原象為(2.5,1.5).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,則f[f(-2)]=2;使f(a)<0的a的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.“a≤-1”是“函數(shù)f(x)=ax+2在區(qū)間[-1,2]上有零點”的充分不必要條件.(在“充分不必要、必要不充分、充要、既不充分也不必要”中選一個填)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知命題甲是“{x|$\frac{{{x^2}+x}}{x-1}$≥0}”,命題乙是“{x|log3(2x+1)≤0}”,則(  )
A.甲是乙的充分條件,但不是乙的必要條件
B.甲是乙的必要條件,但不是乙的充分條件
C.甲是乙的充要條件
D.甲既不是乙的充分條件,也不是乙的必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.(文)定義運算$|\begin{array}{l}{a}&{c}\\{b}&p9vv5xb5\end{array}|$=ad-bc,復數(shù)z滿足$|\begin{array}{l}{z}&{i}\\{m}&{i}\end{array}|$=1-2i,且z為純虛數(shù),則實數(shù)m的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)Sn為數(shù)列{an}的前n項和,bn=$\frac{{{S_{n+1}}-{S_n}}}{{{S_n}{S_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 色妞网| 在线观看av不卡 | 午夜久久久久久久 | 久久免费精品 | 91视频观看| 黄色在线观看网址 | 在线观看黄色av | 午夜看看 | 久艹在线观看 | 国产在线观看不卡 | 成人片在线看 | 欧美在线播放视频 | 色香蕉视频 | 99伊人网| 欧美一区二区免费 | 日韩欧美精品一区 | 日韩福利 | 91亚洲精品乱码久久久久久蜜桃 | 麻豆一区二区三区四区 | 亚洲三级黄色片 | 麻豆精品在线播放 | 黄色成人在线视频 | 日韩精品视频免费在线观看 | 性做久久久久久 | 91手机看片 | 亚洲一区在线播放 | a级片网址 | 中文字幕在线观看一区二区 | 久久久亚洲天堂 | 久在线| 欧美在线免费观看 | 亚洲视频在线免费观看 | 九一国产精品 | 国产精品久久一区二区三区 | 日产久久视频 | 久久久成人免费视频 | 久久久天堂 | 欧美在线免费观看 | 婷婷国产 | 中文字幕免费在线看线人动作大片 | 欧美日韩国产二区 |