分析 (1)利用三角恒等變換化簡函數的解析式,利用求得正弦函數的定義域和值域函數f(x)的值域.
(2)利用正弦函數的單調性,正弦函數的圖象的對稱性,求得函數f(x)的單調遞增區間和其圖象的對稱中心.
解答 解:(1)$f(x)=\frac{1}{2}sin2x-\frac{{\sqrt{3}}}{2}cos2x=sin(2x-\frac{π}{3})$,∵x∈[${\frac{π}{12}$,$\frac{7π}{12}}$],∴2x-$\frac{π}{3}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],∴$f(x)∈[{-\frac{1}{2},1}]$.
(2)由題知,使f(x)單調遞增,
則須$2x-\frac{π}{3}∈[{-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ}],k∈Z,解得x∈[{-\frac{π}{12}+kπ,\frac{5π}{12}+kπ}],k∈Z$,
∴函數f(x)的單調遞增區間為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z,
令2x-$\frac{π}{3}$=kπ,求得x=$\frac{kπ}{2}$+$\frac{π}{6}$,故函數的圖象的對稱中心為($\frac{kπ}{2}$+$\frac{π}{6}$,0),k∈Z.
點評 本題主要考查三角恒等變換,正弦函數的定義域和值域,正弦函數的單調性,正弦函數的圖象的對稱性,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com