日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
5.已知函數f(x)=lnx-x+$\frac{a}{x}$+1(a∈R).
(1)討論f(x)的單調性與極值點的個數;
(2)當a=0時,關于x的方程f(x)=m(m∈R)有2個不同的實數根x1,x2,證明:x1+x2>2.

分析 (1)先求出導函數,再根據判別式和a的范圍分類討論,即可判斷函數的單調性和極值點的個數,
(2)問題轉化為要證x1+x2=$\frac{t+1}{t-1}$lnt>2,t>1,即證(t+1)lnt>2(t-1),構造函數,根據導數和函數的單調性和最值得關系即可證明.

解答 解:(1)f′(x)=$\frac{1}{x}$-1-$\frac{a}{{x}^{2}}$=$\frac{-{x}^{2}+x-a}{{x}^{2}}$,x>0
方程-x2+x-a=0的判別式為△=1-4a,
①當a≥$\frac{1}{4}$時,f′(x)≤0,f(x)在(0,+∞),為減函數,無極值點,
②當0≤a<$\frac{1}{4}$時,令f′(x)=0,解得x1=$\frac{1-\sqrt{1-4a}}{2}$>0,x2=$\frac{1+\sqrt{1-4a}}{2}$,
當f′(x)<0,解得0<x<$\frac{1-\sqrt{1-4a}}{2}$,x>$\frac{1+\sqrt{1-4a}}{2}$,
此時f(x)在(0,$\frac{1-\sqrt{1-4a}}{2}$),($\frac{1+\sqrt{1-4a}}{2}$,+∞)為減函數,
當f′(x)>0時,解得$\frac{1-\sqrt{1-4a}}{2}$<x<$\frac{1+\sqrt{1-4a}}{2}$,
此時f(x)在($\frac{1-\sqrt{1-4a}}{2}$,$\frac{1+\sqrt{1-4a}}{2}$)為增函數,
此時f(x)有一個極大值點x=$\frac{1+\sqrt{1-4a}}{2}$,和一個極小值點x=$\frac{1-\sqrt{1-4a}}{2}$,
③當a<0,令f′(x)=0,解得x1=$\frac{1-\sqrt{1-4a}}{2}$<0,x2=$\frac{1+\sqrt{1-4a}}{2}$>0,
當f′(x)>0,解得0<x<$\frac{1+\sqrt{1-4a}}{2}$,此時f(x)在(0,$\frac{1+\sqrt{1-4a}}{2}$),為增函數,
當f′(x)<0時,解得x>$\frac{1+\sqrt{1-4a}}{2}$,此時在($\frac{1+\sqrt{1-4a}}{2}$,+∞)為減函數,
此時f(x)有一個極大值點x=$\frac{1+\sqrt{1-4a}}{2}$;
(Ⅱ)由題意知f(x1)=m,f(x2)=m,
故f(x1)=f(x2),
∵x1≠x2,不妨設x1<x2,
∴lnx1-x1+1=lnx2-x2+1,
∴ln$\frac{{x}_{2}}{{x}_{1}}$=x2-x1
令$\frac{{x}_{2}}{{x}_{1}}$=t,則x2=tx1,
∴lnt=(t-1)x1,
∴x1=$\frac{lnt}{t-1}$,x2=tx1=$\frac{tlnt}{t-1}$,
故要證x1+x2=$\frac{t+1}{t-1}$lnt>2,t>1,
即證(t+1)lnt>2(t-1),
令g(t)=(t+1)lnt-2t+2,
∴g′(t)=$\frac{t+1}{t}$+lnt-2=$\frac{tlnt-t+1}{t}$,
令h(t)=tlnt-t+1,t>1,
則h′(t)=lnt>0,
∴h(t)在t∈(1,+∞)上為增函數,
∴h(t)>h(1)=0,
∴g(t)在(1,+∞)為增函數,
∴g(t)>g(1)=0,
∴(t+1)lnt>2(t-1),
即$\frac{t+1}{t-1}$lnt>2,
∴x1+x2>2

點評 本題考查了導數和函數的單調性和極值和最值得關系,關鍵是分類討論和構造函數,屬于難題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.x,y∈R,若|x|+|y|+|x-1|+|y-1|≤2,則x+y的取值范圍為( 。
A.[-2,0]B.[0,2]C.[-2,2]D.(0,2)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知函數f(x)=sinxcosx+$\sqrt{3}{sin^2}$x-$\frac{{\sqrt{3}}}{2}$.
(1)當x∈[${\frac{π}{12}$,$\frac{7π}{12}}$]時,求函數f(x)的值域;
(2)求函數f(x)的單調遞增區間和其圖象的對稱中心.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知函數f(x)=emx-lnx-2.
(1)若m=1,證明:存在唯一實數t∈($\frac{1}{2}$,1),使得f′(t)=0;
(2)求證:存在0<m<1,使得f(x)>0.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知f(x)=-lnx+$\frac{1}{2}$ax2+bx.
(Ⅰ)若b=1-a,討論f(x)的單調性;
(Ⅱ)若a=0時函數有兩個不同的零點,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.設集合A={x||x-a|<2},B={x|$\frac{1}{4}$<2x<8}.
(1)若a=-1,求集合A;
(2)若A∩B=A,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知非空集合A={x|a<x<2a+3},B={x|0<x<1}
(1)若a=-$\frac{1}{2}$,求 A∩B
(2)若A∩B=∅,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2017屆安徽合肥一中高三上學期月考一數學(文)試卷(解析版) 題型:選擇題

已知函數的圖象過點,為函數的導函數,為自然對數的底數,若時,恒成立,則不等式的解集為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源:2016-2017學年河北正定中學高二上月考一數學(文)試卷(解析版) 題型:填空題

某服裝設計公司有1200名員工,其中老年、中年、青年所占的比例為1:5:6.公司十年慶典活

動特別邀請了5位當地的歌手和公司的36名員工同臺表演節目,其中員工按老年、中年、青年進行分層

抽樣,則參演的中年員工的人數為

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品久久久久9999 | 久久这里有精品 | 欧美一区二区视频在线 | 国内成人精品2018免费看 | 日韩欧美一区二区三区免费观看 | 黄色在线免费观看 | 国产成人精品一区二区三区视频 | 日韩综合一区 | 一级淫片免费 | 在线看片成人 | 国产成人一区 | 欧美国产精品一区二区三区 | 久久久水蜜桃 | 久久福利 | 亚洲精品一区二区三区蜜桃久 | 日本性视频 | 成人在线观看免费 | 一级黄色录像免费观看 | 九九久久久| 日韩免费福利视频 | 欧美一级黄色网 | 欧美一区二区三区四区视频 | 日韩大尺度电影在线观看 | 欧美国产日韩在线观看 | 欧美日韩一区二区视频在线观看 | 国产午夜视频 | 欧美一区不卡 | 精品国产一级毛片 | 99热精品在线 | 免费黄色av | 日韩成人在线播放 | 午夜视频观看 | 日韩精品免费视频 | 免费观看亚洲 | 色久在线| 一区二区三区在线播放 | 亚洲无吗视频 | 69av片 | 九色一区二区 | 国产成人福利视频 | 97在线观看 |