分析 (1)根據f(x)的解析式求出f(x)的導函數,通分后根據函數f(x)在(1,+∞)上為單調增函數,得到分子大于0恒成立,解出2a-2小于等于一個函數關系式,利用基本不等式求出這個函數的最小值,列出關于a的不等式,求出不等式的解集即可得到a的取值范圍;
(2)把所證的式子利用對數的運算法則及不等式的基本性質變形,即要證ln$\frac{m}{n}$-$\frac{2(\frac{m}{n}-1)}{\frac{m}{n}+1}$>0,根據(1)得到h(x)在x大于等于1時單調遞增,且$\frac{m}{n}$大于1,利用函數的單調性可得證.
解答 解:(1)f′(x)=$\frac{1}{x}$-$\frac{a(x+1)-a(x-1)}{{(x+1)}^{2}}$=$\frac{{x}^{2}+(2-2a)x+1}{{x(x+1)}^{2}}$,
因為f(x)在(1,+∞)上為單調增函數,所以f′(x)≥0在(1,+∞)上恒成立
即x2+(2-2a)x+1≥0在(1,+∞)上恒成立,
當x∈(1,+∞)時,由x2+(2-2a)x+1≥0,
得:2a-2≤x+$\frac{1}{x}$,
設g(x)=x+$\frac{1}{x}$,x∈(1,+∞),
則g(x)=x+$\frac{1}{x}$>2$\sqrt{x•\frac{1}{x}}$=2,
故g(x)>2,
所以2a-2≤2,解得a≤2,所以a的取值范圍是(-∞,2];
(2),不妨設m>n>0,要證 $\frac{m-n}{lnm-lnn}$-$\frac{m+n}{2}$<0,
只需證ln$\frac{m}{n}$>$\frac{2(\frac{m}{n}-1)}{\frac{m}{n}+1}$,即ln$\frac{m}{n}$-$\frac{2(\frac{m}{n}-1)}{\frac{m}{n}+1}$>0,
設h(x)=lnx-$\frac{2(x-1)}{x+1}$,
由(1)知h(x)在(1,+∞)上是單調增函數,
又$\frac{m}{n}$>1,
所以h($\frac{m}{n}$)>h(1)=0,
即ln$\frac{m}{n}$-$\frac{2(\frac{m}{n}-1)}{\frac{m}{n}+1}$>0成立,
得到 $\frac{m-n}{lnm-lnn}$-$\frac{m+n}{2}$<0.
點評 此題考查學生會利用導函數的正負確定函數的單調區間,掌握不等式恒成立時所滿足的條件,會利用基本不等式求函數的最小值,是一道中檔題.在證明第(2)時注意利用第(1)問中的結論.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{4}{7}$ | B. | $\frac{5}{8}$ | C. | $\frac{5}{9}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{\sqrt{10}}{5}$ | C. | 2 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{12}{5}$ | B. | -$\frac{12}{5}$ | C. | $\frac{5}{12}$ | D. | -$\frac{5}{12}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com