分析 (1)由已知利用特殊角的三角函數值及兩角和的正弦函數公式化簡可得sinA=$\sqrt{3}$cosA,結合A∈(0,π),可求tanA=$\sqrt{3}$,進而可求A的值.
(2)由已知及(1)可求A-B=$\frac{π}{3}$-B∈(0,$\frac{π}{3}$),利用同角三角函數基本關系式可求sin(A-B)的值,利用B=A-(A-B),根據兩角差的正弦函數公式即可計算得解.
解答 (本題滿分為10分)
解:(1)因為sin(A+$\frac{π}{6}$)=2cosA,得$\frac{\sqrt{3}}{2}$sinA+$\frac{1}{2}$cosA=2cosA,
即sinA=$\sqrt{3}$cosA,
因為A∈(0,π),且cosA≠0,
所以tanA=$\sqrt{3}$,
所以A=$\frac{π}{3}$.…(4分)
(2)因為B∈(0,π),cos(A-B)=$\frac{4}{5}$,
所以A-B=$\frac{π}{3}$-B∈(0,$\frac{π}{3}$),
因為sin2(A-B)-cos2(A-B)=1,
所以sin(A-B)=$\frac{3}{5}$,…(7分)
所以sinB=sin[A-(A-B)]=sinAcos(A-B)-cosAsin(A-B)=$\frac{4\sqrt{3}-3}{10}$.…(10分)
點評 本題主要考查了特殊角的三角函數值,兩角和與差的正弦函數公式,同角三角函數基本關系式在三角函數化簡求值中的應用,考查了計算能力和轉化思想,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [0,6] | B. | [6,7] | C. | [$\frac{27}{8}$,7] | D. | [$\frac{27}{8}$,6] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 0 | D. | 2015 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {0,1,2,3} | B. | {1,2,4} | C. | {0,4,5} | D. | {5} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4π+8 | B. | $4π+\frac{8}{3}$ | C. | $\frac{4π}{3}+8$ | D. | $\frac{4π+8}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com