(本小題滿分14分)
如圖,已知橢圓,
是橢圓
的頂點(diǎn),若橢圓
的離心率
,且過點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)作直線,使得
,且與橢圓
相交于
兩點(diǎn)(異于橢圓
的頂點(diǎn)),設(shè)直線
和直線
的傾斜角分別是
,求證:
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、
為橢圓的焦點(diǎn),且直線
與橢圓相切.
(Ⅰ)求橢圓方程;
(Ⅱ)過的直線交橢圓于
、
兩點(diǎn),求△
的面積
的最大值,并求此時(shí)直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點(diǎn)
,且離心率e=
.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn)
、
,且線段
的垂直平分線過定點(diǎn)
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)已知點(diǎn),直線
:
交
軸于點(diǎn)
,點(diǎn)
是
上的動(dòng)點(diǎn),過點(diǎn)
垂直于
的直線與線段
的垂直平分線交于點(diǎn)
.
(Ⅰ)求點(diǎn)的軌跡
的方程;(Ⅱ)若 A、B為軌跡
上的兩個(gè)動(dòng)點(diǎn),且
證明直線AB必過一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分) 已知?jiǎng)訄A過定點(diǎn)
,且與直線
相切,橢圓
的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)是
,點(diǎn)
在橢圓
上.
(Ⅰ)求動(dòng)圓圓心的軌跡
的方程及其橢圓
的方程;
(Ⅱ)若動(dòng)直線與軌跡
在
處的切線平行,且直線
與橢圓
交于
兩點(diǎn),問:是否存在著這樣的直線
使得
的面積等于
?如果存在,請(qǐng)求出直線
的方程;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線C的中心在原點(diǎn),拋物線的焦點(diǎn)是雙曲線C的一個(gè)焦點(diǎn),且雙曲線經(jīng)過點(diǎn)
,又知直線
與雙曲線C相交于A、B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若,求實(shí)數(shù)k值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知半徑為6的圓與
軸相切,圓心
在直線
上且在第二象限,直線
過點(diǎn)
.
(Ⅰ)求圓的方程;
(Ⅱ)若直線與圓
相交于
兩點(diǎn)且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓,點(diǎn)
在橢圓上。
(1)求橢圓的離心率;
(2)若橢圓的短半軸長(zhǎng)為,直線
與橢圓交于A、B,且線段AB以M(1,1)為中點(diǎn),求直線
的方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com