日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知sin(2α-β)=
3
5
,sinβ=-
12
13
,且α∈(
π
2
,π),β∈(-
π
2
,0),求cosα的值.
考點:兩角和與差的正弦函數
專題:三角函數的求值
分析:由同角三角函數的基本關系可得cosβ和cos(2α-β),由和差角公式可得cos2α,再由二倍角的余弦公式可得.
解答: 解:∵sinβ=-
12
13
,β∈(-
π
2
,0),
∴cosβ=
1-sin2β
=
1-(-
12
13
)2
=
5
13

又α∈(
π
2
,π),∴2α-β∈(π,
2
),
又∵sin(2α-β)=
3
5
>0,∴2α-β∈(2π,
2
),
∴cos(2α-β)=
1-sin2(2α-β)
=
4
5

∴cos2α=cos[(2α-β)+β]=cos(2α-β)cosβ-sin(2α-β)sinβ
=
4
5
×
5
13
-
3
5
×(-
12
13
)
=
56
65
,∴2cos2α-1=
56
65

解得cosα=±
11
130
130

∵α∈(
π
2
,π),∴cosα=-
11
130
130
點評:本題考查兩角和與差的三角函數公式,涉及二倍角公式和同角三角函數的基本關系,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=ex(其中e為自然對數的底數),g(x)=
n
2
x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1-
n
2
,求T(x)在[0,1]上的最大值;
(2)若n=4時方程f(x)=g(x)在[0,2]上恰有兩個相異實根,求m的取值范圍;
(3)若m=-
15
2
,n∈N*,求使f(x)的圖象恒在g(x)圖象上方的最大正整數n.[注意:7<e2
15
2
].

查看答案和解析>>

科目:高中數學 來源: 題型:

數列{an}中,Sn是其前n項和,若a1=1,an+1=
1
3
Sn(n≥1),則a7=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知|
a
|=3,|
b
|=4,且滿足(2
a
-
b
)(
a
+2
b
)≥4,求
a
b
的夾角β的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

一個簡單隨機抽樣的樣本為:9,12,a,13,14,且a恰好等于該樣本的均值,則a的值是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=lnx-ax2(a∈R).
(Ⅰ)求函數f(x)的單調區間;
(Ⅱ)當a=
1
8
時,證明:存在x0∈(2,+∞),使f(x0)=f(1).

查看答案和解析>>

科目:高中數學 來源: 題型:

i,j是兩個不共線的向量,且
AB
=3i+2j,
CB
=-2i+j,
CD
=i+λj若A,B,D三點共線,求實數λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

點A(3,
327
),B(-8,-2)分別在冪函數y=f(x)和y=g(x)的圖象上,且f(x)<g(x),求實數x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的三個頂點A、B、C的坐標分別為(0,1)、(
2
,0)、(0,-2),O為坐標原點,動點P滿足|
CP
|=1,則|
OA
+
OB
+
OP
|的最小值是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一本一道久久a久久精品蜜桃 | 免费一区二区三区 | 欧美视频久久 | 欧美在线视频观看 | www.亚洲一区| 免费在线小视频 | 国产福利91精品一区二区三区 | 日本在线天堂 | 欧美在线视频一区二区 | 日韩国产在线播放 | 精品少妇 | 天天射天天干天天操 | 欧美激情视频一区二区 | 福利视频网站 | 亚洲自拍偷拍一区 | 日韩精品影院 | 在线观看一区 | 无遮挡在线观看 | 一区二区三区四区在线 | 国产91在线看 | 免费观看一区二区三区毛片 | 欧美精品一级片 | 国产黄色在线 | 亚洲一区视频 | 国产精品伦子伦免费视频 | 国产视频一区在线 | 亚洲视频在线免费观看 | www.国产| 欧美国产日韩视频 | 中文字幕日本 | 国产人成一区二区三区影院 | 亚洲精品久久久久 | 最新中文字幕在线 | 欧美精品亚洲 | 精品久久一区二区三区 | 青青草免费在线视频 | 天堂av影视| 成人在线播放视频 | 国产日本在线 | 午夜精品在线观看 | 日韩黄色免费视频 |