分析 由橢圓的方程,設P點坐標,利用余弦定理求得|F1P|•|PF2|,根據三角形的面積公式求得面積S,利用三角形面積相等,即${S}_{△{F}_{1}P{F}_{2}}$=$\frac{1}{2}$丨F1F2|•y0,即可求得y0,代入橢圓方程,即可求得P點坐標.
解答 解:由橢圓$\frac{x^2}{16}+\frac{y^2}{9}$=1,
a=4,b=3,c=$\sqrt{7}$,
又∵P是橢圓第一象限的點(x0,y0),y0>0,∠F1PF2=60°,F1、F2為左右焦點,
∴|F1P|+|PF2|=2a=8,|F1F2|=2c=2$\sqrt{7}$,
∴|F1F2|2=|PF1|2+|PF2|2-2|F1P|•|PF2|cos60°,
=(|PF1|+|PF2|)2-2|F1P||PF2|-2|F1P|•|PF2|cos60°,
=64-3|F1P|•|PF2|,
∴64-3|F1P|•|PF2|=28,
∴|F1P|•|PF2|=12.
∴${S}_{△{F}_{1}P{F}_{2}}$=$\frac{1}{2}$|F1P|•|PF2|sin60°=3$\sqrt{3}$,
由${S}_{△{F}_{1}P{F}_{2}}$=$\frac{1}{2}$丨F1F2|•y0=3$\sqrt{3}$,
解得:y0=$\frac{3\sqrt{21}}{7}$,
將y0=$\frac{3\sqrt{21}}{7}$,代入橢圓方程,解得:x0=$\frac{8\sqrt{7}}{7}$,
∴P點坐標為:$({\frac{{8\sqrt{7}}}{7},\frac{{3\sqrt{21}}}{7}})$,
故答案為:$({\frac{{8\sqrt{7}}}{7},\frac{{3\sqrt{21}}}{7}})$.
點評 本題考查橢圓的標準方程及簡單幾何性質,考查余弦定理及三角形的面積公式,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若“x=$\frac{π}{4}$,則tanx=1”的逆命題為真命題 | |
B. | 在△ABC中,sinA>sinB的充要條件是A>B | |
C. | 函數f(x)=sinx+$\frac{4}{sinx}$,x∈(0,π)的最小值為4 | |
D. | ?x∈R,使得sinx•cosx=$\frac{3}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{13}{5}$+$\frac{1}{5}$i | B. | -$\frac{13}{5}$-$\frac{1}{5}$i | C. | $\frac{13}{5}$+$\frac{1}{5}$i | D. | $\frac{13}{5}$-$\frac{1}{5}$i |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com