日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
1.已知函數f(x)=$\left\{\begin{array}{l}{2-2x,0≤x<1}\\{lnx,1≤x≤e}\end{array}\right.$.
(1)求f(f($\sqrt{e}$));
(2)若x0滿足f(f(x0))=x0,且f(x0)≠x0,則稱x0為f(x)的二階不動點,求函數f(x)的二階不動點的個數.

分析 (1)利用分段函數,逐步求解函數值即可.
(2)利用分段函數求出f(f(x0))的解析式,然后通過求解方程得到函數f(x)的二階不動點的個數.

解答 解:(1)∵f(x)=$\left\{\begin{array}{l}{2-2x,0≤x<1}\\{lnx,1≤x≤e}\end{array}\right.$.
∴f($\sqrt{e}$))=ln$\sqrt{e}$=$\frac{1}{2}$,
∴f(f($\sqrt{e}$))=f($\frac{1}{2}$)=2-2×$\frac{1}{2}$=1;
(2)函數f(x)=$\left\{\begin{array}{l}{2-2x,0≤x<1}\\{lnx,1≤x≤e}\end{array}\right.$.x∈[0,$\frac{1}{2}$),f(x)=2-2x∈(1,2],
x∈[$\frac{1}{2}$,1),f(x)=2-2x∈(0,1],
x∈[1,e],f(x)=lnx∈(0,1),
∴f(f(x))=$\left\{\begin{array}{l}{ln(2-2x),0≤x<\frac{1}{2}}\\{2-2(2-2x),\frac{1}{2}≤x<1}\\{2-2lnx,1≤x≤e}\end{array}\right.$,
若x0滿足f(f(x0))=x0,且f(x0)≠x0,則稱x0為f(x)的二階不動點,
所以:x0∈[0,$\frac{1}{2}$),ln(2-2x0)=x0,由y=ln(2-x0),y=x0,圖象可知:

存在滿足題意的不動點.
x0∈[$\frac{1}{2}$,1),-2+4x0=x0,解得x0=$\frac{2}{3}$,滿足題意.
x0∈[1,e],2-2lnx0=x0,即2-x0=2lnx0,由y=2-x0,y=2lnx0,圖象可知:

存在滿足題意的不動點.
函數f(x)的二階不動點的個數為:3個.

點評 本題考查新定義的應用,考查數形結合,分類討論思想以及轉化思想的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

11.已知函數f(x)=mlnx+(4-2m)x+$\frac{1}{x}$(m∈R).
(1)當m=2時,求函數f(x)的極值;
(2)設t,s∈[1,3],不等式|f(t)-f(s)|<(a+ln3)(2-m)-2ln3對任意的m∈(4,6)恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.甲,乙兩人被隨機分配到A,B,C三個不同的崗位(一個人只能去一個工作崗位),記分配到A崗位的人數為隨機變量X,則隨機變量X的數學期望E(X)=$\frac{2}{3}$,方差D(X)=$\frac{4}{9}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.已知m>0,n>0,向量$\overrightarrow{a}$=(m,1,-3)與$\overrightarrow{b}$=(1,n,2)垂直,則mn的最大值為9.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.若焦點在x軸上的橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1的離心率為$\frac{1}{2}$,則m=3.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.已知在空間四邊形ABCD中,$\overrightarrow{AB}=\vec a$,$\overrightarrow{BC}=\vec b$,$\overrightarrow{AD}=\vec c$,則$\overrightarrow{CD}$=(  )
A.$\vec a+\vec b-\vec c$B.$\vec c-\vec a-\vec b$C.$\vec c+\vec a-\vec b$D.$\vec a+\vec b+\vec c$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知函數$f(x)=\left\{\begin{array}{l}-2x,x<0\\-{x^2}+2x,x≥0\end{array}\right.$若關于x的方程$f(x)=\frac{1}{2}x+m$恰有三個不相等的實數解,則m的取值范圍是(  )
A.$[{0,\frac{3}{4}}]$B.$(0,\frac{3}{4})$C.$[{0,\frac{9}{16}}]$D.$(0,\frac{9}{16})$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.已知集合A={x|x>2m},B={x|-4<x-4<4}
(1)當m=2時,求A∪B,A∩B;
(2)若A⊆∁RB,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.總體由編號為00,01,02,…48,49的50個個體組成.利用下面的隨機數表選取8個個體,選取方法是從隨機數表第6行的第9列和第10列數字開始由左到右依次選取兩個數字,則選出來的第8個個體的編號為(  )
附:第6行至第9行的隨機數表:
A.16B.19C.20D.38

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久成人精品视频 | 日日骚| 超碰999 | 精品国产乱码久久久久久闺蜜 | wwwxxxx日本 | 亚洲天堂男人 | 日韩欧美精品在线视频 | 免费av电影网站 | 日韩色av | 国产免费视频一区二区三区 | 亚洲三级网站 | 日韩大片免费观看视频播放 | 欧美日韩黄色一级片 | 91精品国产综合久久精品 | 中文字幕在线视频免费观看 | 国产精品一级视频 | 成人av电影免费看 | 成年人在线看 | 一个人看的www日本高清视频 | 在线观看成人 | 精品国产一区二区三区免费 | 久久99精品久久久久久琪琪 | 国产猛男猛女超爽免费视频网站 | 青青综合网 | 男女羞羞羞视频午夜视频 | 国产精品视频一区二区三区四区国 | 日韩精品一区二区三区 | 国产综合久久久 | 日韩精品专区在线影院重磅 | 国产精品一区在线观看 | 久久久成人av | 超级黄色一级片 | 日韩一区二区三区精品 | 国产在线观看欧美 | 久久久久久久久久久久久久久久久久久 | 九九热这里只有 | 成人在线高清视频 | 国产精品乱码一区二区三区 | 欧美系列第一页 | 欧美日韩视频一区二区 | av影院在线观看 |