日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
5.已知數列{an+1-2an}(n∈N*)是公比為2的等比數列,其中a1=1,a2=4.
(Ⅰ)證明:數列$\{\frac{a_n}{2^n}\}$是等差數列;
(Ⅱ)求數列{an}的前n項和Sn
( III)記數列${c_n}=\frac{{2{a_n}-2n}}{n},(n≥2)$,證明:$\frac{1}{2}-{(\frac{1}{2})^n}<\frac{1}{c_2}+\frac{1}{c_3}+…+\frac{1}{c_n}<1-{(\frac{1}{2})^{n-1}}$.

分析 (Ⅰ)通過等比數列的通項公式可知an+1-2an=2n,兩端同除2n+1即得結論;
(Ⅱ)利用錯位相減法計算即得結論,
(Ⅲ)利用放縮法即可證明.

解答 解:(Ⅰ)證明:由已知得${a_{n+1}}-2{a_n}=({a_2}-2{a_1})•{2^{n-1}}={2^n}$,
兩端同除2n+1得:$\frac{{{a_{n+1}}}}{{{2^{n+1}}}}-\frac{a_n}{2^n}=\frac{1}{2}$,
所以數列$\{\frac{a_n}{2^n}\}$是以首項為$\frac{1}{2}$,公差為$\frac{1}{2}$的等差數列;
(Ⅱ)由(Ⅰ)知$\frac{a_n}{2^n}=\frac{1}{2}n$,所以${a_n}=n•{2^{n-1}}$,
${S_n}=1•{2^0}+2•{2^1}+…+n•{2^{n-1}}$,
則2Sn=1•21+2•22+…+n•2n
相減得:$-{S_n}=1•{2^0}+{2^1}+…+{2^{n-1}}-n•{2^n}$,
所以$-{S_n}=\frac{{1-{2^n}}}{1-2}-n•{2^n}$,
即${S_n}=(n-1){2^n}+1$.                                  
(Ⅲ)證明:數列cn=2n-2,n≥2,
∴$\frac{1}{c_n}=\frac{1}{{{2^n}-2}}>\frac{1}{2^n}$,
∴$\frac{1}{c_2}+\frac{1}{c_3}+…+\frac{1}{c_n}>\frac{1}{2^2}+\frac{1}{2^3}+…+\frac{1}{2^n}=\frac{{\frac{1}{4}[1-{{(\frac{1}{2})}^{n-1}}]}}{{1-\frac{1}{2}}}=\frac{1}{2}-{(\frac{1}{2})^n}$
又∵$\frac{1}{c_n}=\frac{1}{{{2^n}-2}}<\frac{2}{2^n}={(\frac{1}{2})^{n-1}}$,(n≥3),
當n=2時,$\frac{1}{c_2}=\frac{1}{2}$,
∴$\frac{1}{{c}_{2}}+\frac{1}{{c}_{3}}+…+\frac{1}{{c}_{n}}$<$\frac{1}{{2}^{1}}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n-1}}$=$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n-1}]}{1-\frac{1}{2}}$=1-($\frac{1}{2}$)n-1
所以原不等式得證.

點評 本題考查數列的通項及前n項和不等式的證明,對表達式的靈活變形及錯位相減法和放縮是解決本題的關鍵,注意解題方法的積累,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.“牟合方蓋”是我國古代數學家劉微在研究球的體積的過程中構造的一個和諧優(yōu)美的幾何體,它由完全相同的四個曲面構成,相對的兩個曲面在同一圓柱的側面上,好似兩個扣合(牟合)在一起的方形傘(方蓋).如圖,正邊形ABCD是為體現其直觀性所作的輔助線,若該幾何體的正視圖與側視圖都是半徑為r的圓,根據祖暅原理,可求得該幾何體的體積為(  )
A.$\frac{8}{3}{r^3}$B.$\frac{8}{3}π{r^3}$C.$\frac{16}{3}{r^3}$D.$\frac{16}{3}π{r^3}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$8-\frac{4}{3}π$B.$8-\frac{8}{3}π$C.24-πD.24+π

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.已知函數f(x)=4x3+ax2+bx+5在x=-1與x=$\frac{3}{2}$處有極值,則函數的單調遞減區(qū)間為(-1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.在等差數列{an}中,若a1,a3,a4成等比數列,則該等比數列的公比為(  )
A.$\frac{1}{2}$B.1C.1或$\frac{1}{2}$D.無法確定

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知數列{an}中,a3=2,a7=1,若數列$\left\{{\frac{1}{{1+{a_n}}}}\right\}$是等差數列,則a11等于(  )
A.0B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.已知實數x,y滿足-1≤x+y≤4且2≤x-y≤3,則不等式圍成的區(qū)域面積為$\frac{5}{2}$,則2x-3y的取值范圍是[3,8].

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知函數f(x)=(x2-a+1)ex,g(x)=(x2-2)ex+2
(1)若函數f(x)在區(qū)間[-2,2]上是單調函數,求實數a的取值范圍;
(2)若f(x)有兩個不同的極值點m,n(m<n),且2(m+n)≤mn-1,記F(x)=e2f(x)+g(x),求F(m)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.若$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,且$\overrightarrow a$與$\overrightarrow c$的夾角為60°,$\overrightarrow a$與$\overrightarrow b$的夾角為θ,$|{\overrightarrow b}|=\sqrt{3}|{\overrightarrow a}|$,則tanθ=(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.-$\frac{{\sqrt{3}}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久精品色欧美aⅴ一区二区 | 羞羞视频免费观看 | 日本中文字幕一区 | 黄网在线免费观看 | 国产亚洲精品美女久久久久久久久久 | 热久久这里只有精品 | 色婷婷国产精品久久包臀 | 精品国产乱码久久久久久1区2区 | 久久精品一区二区三区四区 | 亚洲三级网址 | www.日韩.com| 国产99页 | 久久久久无码国产精品一区 | 国产精品久久一区性色av图片 | 日日摸日日碰夜夜爽不卡dvd | 国产精品一区二区三区99 | 狠狠骚 | 在线h观看| 久久综合伊人 | 欧美精品一区二区免费 | 国产一区二区三区精品久久久 | 成人高清在线 | 不卡视频一区 | 狠狠狠狠狠操 | 中文一区二区 | 亚洲精品一二三区 | 亚洲欧美中文日韩v在线观看 | 狠狠爱天天操 | 亚洲乱码一区二区三区在线观看 | 中文字幕99| 国产精品久久精品 | 欧美成人免费在线视频 | 黄色短视频在线观看 | 九九热免费精品视频 | 山外人精品 | 日韩成人精品在线 | 久久天堂av综合合色蜜桃网 | 久久精品视频7 | 国产日韩一区二区三区 | 国产精品日本一区二区不卡视频 | 欧日韩不卡在线视频 |