A. | -378 | B. | 62 | C. | 72 | D. | 112 |
分析 設等比數列的公比為q,q>0,由題意可得Sn=$\frac{{a}_{1}}{1-q}$(1-qn)=2,S3n-Sn=$\frac{{a}_{1}}{1-q}$(1-q3n)-$\frac{{a}_{1}}{1-q}$(1-qn)=$\frac{{a}_{1}}{1-q}$(qn-q3n)=12,求出$\frac{{a}_{1}}{1-q}$=-2,qn=2,由此能求出再后面3n項的和.
解答 解:∵一個正項等比數列{an}的前n項和為2,其后2n項的和為12,
設等比數列的公比為q,q>0,
∴由題意可得Sn=$\frac{{a}_{1}}{1-q}$(1-qn)=2,①
S3n-Sn=$\frac{{a}_{1}}{1-q}$(1-q3n)-$\frac{{a}_{1}}{1-q}$(1-qn)=$\frac{{a}_{1}}{1-q}$(qn-q3n)=12,②
由①②解得$\frac{{a}_{1}}{1-q}$=-2,qn=2或$\frac{{a}_{1}}{1-q}$=$\frac{1}{2}$,qn=-3,(舍)
∴再后面3n項的和:
S6n-S3n=$\frac{{a}_{1}}{1-q}$(1-q6n)-$\frac{{a}_{1}}{1-q}$(1-q3n)=$\frac{{a}_{1}}{1-q}$(q3n-q6n)
=-2(8-64)=112.
故選:D.
點評 本題考查等比數列的再后面3n項的和的求法,是基礎題,解題時要認真審題,注意等比數列的性質的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com