分析 (1)滿足a1=1,4Sn=anan+1+1.令n=1,可得:4S1=4a1=a1a2+1,解得a2=3,令n=2,3,同理可得:a3,a4.猜想an=2n-1.
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,利用“裂項求和”方法即可得出.
解答 解:(1)滿足a1=1,4Sn=anan+1+1.令n=1,可得:4S1=4a1=a1a2+1,解得a2=3,
令n=2,3,同理可得:a3=5,a4=7.
猜想an=2n-1.
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴數列{bn}的前n項和Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.
點評 本題考查了數列遞推關系、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | $\frac{1}{3}$ | C. | $-\frac{1}{3}$ | D. | -3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)的圖象過點$(0,\frac{1}{2})$ | B. | f(x)在$[{\frac{5π}{12},\frac{2π}{3}}]$上是減函數 | ||
C. | f(x)的一個對稱中心是點$({\frac{5π}{12},0})$ | D. | f(x)的最大值為A |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{7}}}{2}$ | C. | $±\frac{{\sqrt{3}}}{2}$ | D. | $±\frac{{\sqrt{7}}}{2}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com