分析 (1)利用兩角和與差以及輔助角公式基本公式將函數化為y=Asin(ωx+φ)的形式.結合三角函數的圖象和性質,求出f(x)的最小值,可求常數a的值.
(2)將內層函數看作整體,放到正弦函數的增區間上,解不等式得函數的單調遞增區間,結合三角函數的性質可得對稱軸方程.
解答 解:(1)函數$f(x)=sin(x+\frac{π}{6})+sin(x-\frac{π}{6})+cosx+a$
化簡可得:f(x)=sinxcos$\frac{π}{6}$+cosxsin$\frac{π}{6}$+sinxcos$\frac{π}{6}$-cosxsin$\frac{π}{6}$+cosx+a
=$\sqrt{3}$sinx+cosx+a
=2sin(x+$\frac{π}{6}$)+a.
∵f(x)的最小值為1.即-2+a=1
∴解得:a=3
(2)由(1)可得f(x)=2sin(x+$\frac{π}{6}$)+3.
令$-\frac{π}{2}+2kπ≤$x+$\frac{π}{6}$$≤\frac{π}{2}+2kπ$是單調遞增,
解得:$-\frac{2π}{3}+2kπ≤x≤\frac{π}{3}+2kπ$,
∴單調增區間$[{-\frac{2}{3}π+2kπ,\frac{π}{3}+2kπ}],k∈Z$;
令$-\frac{3π}{2}$+2kπ≤x+$\frac{π}{6}$$≤-\frac{π}{2}+2kπ$是單調遞減,
解得:$-\frac{5π}{3}+2kπ≤x≤-\frac{2π}{3}+2kπ$
∴單調減區間$[{-\frac{5}{3}π+2kπ,-\frac{2}{3}π+2kπ}],k∈Z$;
令x+$\frac{π}{6}$=$\frac{π}{2}+kπ$
解得:$x=\frac{π}{3}+kπ,k∈Z$
∴對稱軸方程是$x=\frac{π}{3}+kπ,k∈Z$
點評 本題主要考查對三角函數的化簡能力和三角函數的圖象和性質的運用,利用三角函數公式將函數進行化簡是解決本題的關鍵.屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ③④ | D. | ②④ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ![]() | B. | ![]() | ||
C. | ![]() | D. | ![]() |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com