【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1是邊長為2的菱形,且CA=CB1.
(1)證明:面CBA1⊥面CB1A;
(2)若∠BAA1=60°,A1C=BC=BA1,求點(diǎn)C到平面A1BC1的距離.
【答案】(1)證明見解析;(2)
【解析】
(1)設(shè)A1B∩AB1=O,連接CO.證明A1B⊥AB1,CO⊥AB1,得到AB1⊥面CA1B,然后證明面CBA1⊥面CB1A.
(2)說明線段CH的長就是點(diǎn)C到平面A1BC1的距離.然后轉(zhuǎn)化求解即可.
(1)證明:設(shè)A1B∩AB1=O,連接CO.因?yàn)閭?cè)面ABB1A1是菱形,所以A1B⊥AB1,
又因?yàn)?/span>CA=CB1,所以CO⊥AB1,又A1B∩CO=O,
所以AB1⊥面CA1B,又AB1面CAB1,所以面CBA1⊥面CB1A.
(2)在菱形ABB1A1中,因?yàn)椤?/span>BAA1=60°,
所以△ABA1是等邊三角形,可得A1B=2,所以BC=2=BB1,
所以側(cè)面BB1C1C是菱形,故CB1⊥C1B,(*)
在等邊三角形CA1B中,A1B⊥CO,又A1B⊥AB1,且CO∩AB1=O,
所以A1B⊥面CAB1,又CB1面CAB1,所以CB1⊥A1B,
結(jié)合(*)以及A1B∩C1B=B得CB1⊥面A1C1B,設(shè)CB1∩C1B=H,
則線段CH的長就是點(diǎn)C到平面A1BC1的距離.
經(jīng)計(jì)算得,
,
所以,即點(diǎn)C到平面A1BC1的距離為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是
,以極點(diǎn)為原點(diǎn),極軸為
軸非負(fù)半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)).
(1)寫出曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)在(1)中,設(shè)曲線經(jīng)過伸縮變換
得到曲線
,設(shè)曲線
上任意一點(diǎn)為
,當(dāng)點(diǎn)
到直線
的距離取最大值時(shí),求此時(shí)點(diǎn)
的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有一個(gè)“引葭赴岸”問題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問水深、葭長各幾何?”其意思為“今有水池1丈見方(即尺),蘆葦生長在水的中央,長出水面的部分為1尺.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問水深、蘆葦?shù)拈L度各是多少?假設(shè)
,現(xiàn)有下述四個(gè)結(jié)論:
①水深為12尺;②蘆葦長為15尺;③;④
.
其中所有正確結(jié)論的編號(hào)是( )
A.①③B.①③④C.①④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)的直線l:
與拋物線E:
(
)交于B,C兩點(diǎn),且A為線段
的中點(diǎn).
(1)求拋物線E的方程;
(2)已知直線:
與直線l平行,過直線
上任意一點(diǎn)P作拋物線E的兩條切線,切點(diǎn)分別為M,N,是否存在這樣的實(shí)數(shù)m,使得直線
恒過定點(diǎn)A?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)若曲線上點(diǎn)
處的切線過點(diǎn)
,求函數(shù)
的單調(diào)減區(qū)間;
(II)若函數(shù)在區(qū)間
內(nèi)無零點(diǎn),求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】檳榔原產(chǎn)于馬來西亞,中國主要分布在云南、海南及臺(tái)灣等熱帶地區(qū),亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,南方一些少數(shù)民族還有將果實(shí)作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機(jī)構(gòu)列為致癌物清單Ⅰ類致癌物.云南某民族中學(xué)為了解,
兩個(gè)少數(shù)民族班的學(xué)生咀嚼檳榔的情況,分別從這兩個(gè)班中隨機(jī)抽取5名學(xué)生進(jìn)行調(diào)查,經(jīng)他們平均每周咀嚼檳榔的顆數(shù)作為樣本,繪制成如圖所示的莖葉圖(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).
(1)你能否估計(jì)哪個(gè)班的學(xué)生平均每周咀嚼檳榔的顆數(shù)較多?
(2)在被抽取的10名學(xué)生中,從平均每周咀嚼檳榔的顆數(shù)不低于20顆的學(xué)生中隨機(jī)抽取3名學(xué)生,求抽到班學(xué)生人數(shù)
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且過點(diǎn)
,直線
交橢圓
于不同的兩點(diǎn)
,設(shè)線段
的中點(diǎn)為
.
(1)求橢圓的方程;
(2)當(dāng)的面積為
(其中
為坐標(biāo)原點(diǎn))且
時(shí),試問:在坐標(biāo)平面上是否存在兩個(gè)定點(diǎn)
,使得當(dāng)直線
運(yùn)動(dòng)時(shí),
為定值?若存在,求出點(diǎn)
的坐標(biāo)和定值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在
處的切線方程是
.
(1)求a,b的值;
(2)若對(duì)任意,都有
恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,
,點(diǎn)
為
的中點(diǎn),點(diǎn)
為線段
垂直平分線上的一點(diǎn),且
,固定邊
,在平面
內(nèi)移動(dòng)頂點(diǎn)
,使得
的內(nèi)切圓始終與
切于線段
的中點(diǎn),且
、
在直線
的同側(cè),在移動(dòng)過程中,當(dāng)
取得最小值時(shí),
的面積為( )
A.B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com