分析 (1)利用Sn=2an-1,再寫一式,兩式相減,可得數列{an}是以1為首項,2為公比的等比數列,從而可求數列{an}的通項公式,利用等差數列{bn}滿足b1=1,b4=S8求出數列的首項與公差,即可求數列{bn}的通項公式.
(2)先化簡cn,再根據裂項求和即可求出答案.
解答 解:(1)∵Sn=2an-1,
∴n≥2時,Sn-1=2an-1-1,
∴兩式相減可得,an=2an-2an-1,
∴an=2an-1,
n=1時,a1=2a1-1,∴a1=1,
∴數列{an}是以1為首項,2為公比的等比數列,
∴an=2n-1;
設{bn}的公差為d,b1=a1=1,b4=1+3d,
又b4=S2=7,∴d=2.
∴${b_n}=1+(n-1)×2=2n-1(n∈{N^*})$.
(2)${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴${T_n}=\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}+…+\frac{1}{2n-1}-\frac{1}{2n+1})=\frac{1}{2}(1-\frac{1}{2n+1})=\frac{n}{2n+1}(n∈{N^*})$.
點評 本題考查數列遞推式,考查等比數列的判定與通項,裂項求和,考查學生的計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|-1<x≤3} | B. | {x|-1<x≤4} | C. | {-3,1} | D. | {-1,3} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ?x∈R,2x>x2 | |
B. | a+b=0的充要條件是$\frac{a}{b}=-1$ | |
C. | $?{x_0}∈R,{e^{x_0}}≤0$ | |
D. | 若x,y∈R,且x+y>2,則x,y至少有一個大于1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | 6 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | $\frac{1}{2}$ | C. | $\frac{17}{24}$ | D. | -$\frac{1}{8}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com