分析 (1)在長方形ABCD中,可得AM=BM=2,BM⊥AM,
即BM⊥平面ADM,AD⊥BM;
(2)取AM得中點N,連接DH,BH,MB
則DH⊥AM,又平面ADM⊥平面ABCM,∴DH⊥面ABCM,DH⊥HB
故∠DBH即為直線DB與平面ABCM所成角
在Rt△DHB中,求解直線DB與平面ABCM所成角的正弦值
解答 (1)證明:∵長方形ABCD中,AB=$2\sqrt{2}$,AD=$\sqrt{2}$,M為DC的中點,
∴AM=BM=2,∴BM⊥AM.∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM?平面ABCM
∴BM⊥平面ADM;∵AD?平面ADM∴AD⊥BM; …(6分)
(2)取AM得中點N,連接DH,BH,MB
則DH⊥AM,又平面ADM⊥平面ABCM,∴DH⊥面ABCM,DH⊥HB
故∠DBH即為直線DB與平面ABCM所成角
在Rt△DAM中,DH=$\frac{1}{2}AM=1$,
由(1)得BM⊥平面ADM,BM⊥DM
∴$DB=\sqrt{B{M}^{2}+D{M}^{2}}=\sqrt{6}$
在Rt△DHB中,sin$∠DBH=\frac{DH}{DB}=\frac{1}{\sqrt{6}}=\frac{\sqrt{6}}{6}$
∴直線DB與平面ABCM所成角的正弦值為$\frac{\sqrt{6}}{6}$
點評 本題考查了空間線線垂直的判定,線面角的求解,考查了轉化思想,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 12種 | B. | 14種 | C. | 16種 | D. | 24種 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{a+b}{2}$ | B. | $\sqrt{ab}$ | C. | $\sqrt{\frac{{{a^2}+{b^2}}}{2}}$ | D. | $\frac{ab}{a+b}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | 6 | D. | 8 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com