日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
18.在平面直角坐標系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,且離心率是$\frac{1}{2}$,過坐標原點O的任一直線交橢圓C于M、N兩點,且|NF2|+|MF2|=4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓C交于不同的兩點A、B,且與圓x2+y2=1相切,
(i)求證:m2=k2+1;
(ii)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

分析 (Ⅰ)由|NF2|+|MF2|=4,得2a=4,由離心率是$\frac{1}{2}$,可得c和b即可.
(Ⅱ)(i)由圓心(0,0)到直線l的距離等于半徑,即$\frac{|m|}{\sqrt{1+{k}^{2}}}=1$,⇒m2=k2+1;
(ii)設A(x1、y1),B(x2、y2),由$\left\{\begin{array}{l}{y=kx+m}\\{3{x}^{2}+4{y}^{2}-12=0}\end{array}\right.$,得(3+4k2)x2+8kmx+4m2-12=0,
x1+x2=$\frac{-8km}{3+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=$\frac{{4m}^{2}-12}{3+4{k}^{2}}+\frac{3{m}^{2}-12{k}^{2}}{3+4{k}^{2}}=\frac{7{m}^{2}-12({k}^{2}+1)}{3+4{k}^{2}}$$\frac{-5({k}^{2}+1)}{3+4{k}^{2}}$.

解答 解:(Ⅰ)設M(x,y)是橢圓上任一點,則N(-x,-y),
∵|NF2|+|MF2|=4,∴$\sqrt{(x-c)^{2}+{y}^{2}}+\sqrt{(-x-c)^{2}+(-y)^{2}}=4$
即$\sqrt{(x-c)^{2}+{y}^{2}}+\sqrt{(x+c)^{2}+{y}^{2}}=4$,
∴M(x,y)到點(c,0),(-c,0)的距離和為4,所以2a=4,a=2,
又∵離心率是$\frac{1}{2}$,∴c=1,b=$\sqrt{3}$,
∴橢圓C的方程為:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(Ⅱ)(i)證明:∵直線l:y=kx+m 與圓x2+y2=1相切,則圓心(0,0)到直線l的距離等于半徑1,
即$\frac{|m|}{\sqrt{1+{k}^{2}}}=1$⇒m2=k2+1;
(ii)設A(x1、y1),B(x2、y2),
由$\left\{\begin{array}{l}{y=kx+m}\\{3{x}^{2}+4{y}^{2}-12=0}\end{array}\right.$,得(3+4k2)x2+8kmx+4m2-12=0,
x1+x2=$\frac{-8km}{3+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$,
y1y2=(kx1+m)(kx2+m)=k2 x1x2+km(x1+x2)+m2=$\frac{3{m}^{2}-12{k}^{2}}{3+4{k}^{2}}$.
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=$\frac{{4m}^{2}-12}{3+4{k}^{2}}+\frac{3{m}^{2}-12{k}^{2}}{3+4{k}^{2}}=\frac{7{m}^{2}-12({k}^{2}+1)}{3+4{k}^{2}}$,
∵m2=k2+1,∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=$\frac{-5({k}^{2}+1)}{3+4{k}^{2}}$=-$\frac{\frac{5}{4}(4{k}^{2}+3)+\frac{5}{4}}{4{k}^{2}+3}=-(\frac{5}{4}+\frac{\frac{5}{4}}{4{k}^{2}+3})$
∵當k2=0時,$\overrightarrow{OA}$•$\overrightarrow{OB}$有最小值為-$\frac{5}{3}$.

點評 本題考查了橢圓的方程,及橢圓與直線的位置關系,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

8.在等差數列{an}中,a3+a6=a4+5,且a2不大于1,則a8的取值范圍是(  )
A.[9,+∞)B.(-∞,9]C.(9,+∞)D.(-∞,9)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.P是雙曲線C:$\frac{x^2}{2}-{y^2}$=1右支上一點,直線l是雙曲線C的一條漸近線,P在l上的射影為Q,F1是雙曲線C的左焦點,則|PF1|+|PQ|的最小值為(  )
A.1B.$2+\frac{{\sqrt{15}}}{5}$C.$4+\frac{{\sqrt{15}}}{5}$D.$2\sqrt{2}+1$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.中國古代數學著作《算法統宗》中有這樣一個問題:“三百七十八里關,出行健步不為難,次日腳疼減一半,六朝才得到其關,要見次日行里數,請公仔細算相還.”其大意為:“有一人走了378里路,第一天健步行走,從第二天起因腳疼每天走的路程為前一天的一半,走了6天后到達目的地.”問此人最后一天走了(  )
A.6里B.12里C.24里D.36里

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.已知α,β∈(0,$\frac{π}{2}$),且tan(α-β)=$\frac{1}{2}$,tanβ=$\frac{1}{3}$,則α的值是$\frac{π}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知函數$f(x)=\frac{lnx}{x},g(x)=x({lnx-\frac{ax}{2}-1})$.
(1)求y=f(x)的最大值;
(2)當$a∈[{0,\frac{1}{e}}]$時,函數y=g(x),(x∈(0,e])有最小值. 記g(x)的最小值為h(a),求函
數h(a)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.如圖,給定由10個點(任意相鄰兩點距離為1,)組成的正三角形點陣,在其中任意取三個點,以這三個點為頂點構成的正三角形的個數是(  )
A.12B.13C.15D.16

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.若角α和β的終邊關于直線x+y=0對稱,且α=-$\frac{π}{3}$,則角β的集合是{ β|β=2kπ-$\frac{π}{6}$,k∈Z}.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.如果方程Ax+By+C=0表示的直線是x軸,則A、B、C滿足(  )
A.A•C=0B.B≠0C.B≠0且A=C=0D.A•C=0且B≠0

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产日韩欧美在线 | 国产精品久久久久久久久久99 | 香蕉av777xxx色综合一区 | 亚洲一区二区精品视频 | 网站av | 狠狠色丁香九九婷婷综合五月 | 国产成人免费在线观看 | 青娱乐久久 | 中文字幕在线播放第一页 | 福利视频一区二区三区 | 精品国产乱码久久久久久1区2区 | 精品一区二区免费视频 | 欧美精品欧美极品欧美激情 | 高清国产一区二区三区 | 久久久亚洲一区二区三区 | 日韩欧美大片在线观看 | 久久久天堂国产精品女人 | 国产三级自拍 | 2021最新热播中文字幕-第1页-看片视频 亚洲第一男人天堂 | 黄视频在线免费看 | 视频一区在线播放 | av资源中文在线 | 日本不卡一区 | 电影91久久久 | 在线亚洲激情 | 久久久天堂国产精品女人 | 青青操av| 亚洲免费影院 | 久久久久久久久久久久久久av | 超碰在线天天 | 九色av | 久久av一区二区三区 | 久久免费视频观看 | 91精品在线观看入口 | 一区二区中文字幕 | 久久精品 | 久久久一区二区 | 极品美女中出 | 毛片黄色| 男女看片黄全部免费 | 午夜大片在线观看 |