分析 利用“乘1法”與基本不等式的性質即可得出.
解答 解:∵x>0,y>0,且2x+y=1,
則$\frac{1}{x}$+$\frac{1}{y}$=(2x+y)$(\frac{1}{x}+\frac{1}{y})$=3+$\frac{y}{x}+\frac{2x}{y}$≥3+2$\sqrt{\frac{y}{x}•\frac{2x}{y}}$=3+2$\sqrt{2}$,當且僅當y=$\sqrt{2}x$=$\sqrt{2}$-1時取等號.
其最小值為3+2$\sqrt{2}$.
故答案為:3+2$\sqrt{2}$.
點評 本題考查了“乘1法”與基本不等式的性質,考查了推理能力與計算能力,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | $\overrightarrow{a}$+$\overrightarrow{b}$ | B. | $\overrightarrow{a}$-$\overrightarrow{b}$ | C. | $\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$ | D. | $\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ﹁p:?x∈R,sin $x≤\frac{{\sqrt{3}}}{2}$ | B. | ﹁p:?x∈R,$sinx<\frac{{\sqrt{3}}}{2}$ | ||
C. | ﹁p:?x∈R | D. | ﹁p:?x∈R,$sinx≤\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com