日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

19.如圖,在矩形ABCD中,已知AB=2,AD=4,點(diǎn)E、F分別在AD、BC上,且AE=1,BF=3,將四邊形AEFB沿EF折起,使點(diǎn)B在平面CDEF上的射影H在直線DE上.
(1)求證:CD⊥BE;
(2)求線段BH的長度;
(3)求直線AF與平面EFCD所成角的正弦值.

分析 (1)證明CD⊥平面DBE,即可證明CD⊥BE;
(2)因?yàn)榫段BE,BF在翻折過程中長度不變,根據(jù)勾股定理:$\left\{{\begin{array}{l}{B{E^2}=B{H^2}+E{H^2}}\\{B{F^2}=B{H^2}+F{H^2}=B{H^2}+F{G^2}+G{H^2}}\end{array}}\right.⇒\left\{{\begin{array}{l}{5={h^2}+{k^2}}\\{9={2^2}+{h^2}+{{(2-k)}^2}}\end{array}}\right.$,可解得$\left\{{\begin{array}{l}{h=2}\\{k=1}\end{array}}\right.$,即可求線段BH的長度;
(3)求出點(diǎn)A到平面EFCD的距離為$\frac{2}{3}$,而$AF=\sqrt{13}$,即可求直線AF與平面EFCD所成角的正弦值.

解答 (1)證明:由于BH⊥平面CDEF,∴BH⊥CD,
又由于CD⊥DE,BH∩DE=H,
∴CD⊥平面DBE,∴CD⊥BE.
(2)解:設(shè)BH=h,EH=k,過F作FG垂直ED于點(diǎn)G,
因?yàn)榫段BE,BF在翻折過程中長度不變,根據(jù)勾股定理:$\left\{{\begin{array}{l}{B{E^2}=B{H^2}+E{H^2}}\\{B{F^2}=B{H^2}+F{H^2}=B{H^2}+F{G^2}+G{H^2}}\end{array}}\right.⇒\left\{{\begin{array}{l}{5={h^2}+{k^2}}\\{9={2^2}+{h^2}+{{(2-k)}^2}}\end{array}}\right.$,可解得$\left\{{\begin{array}{l}{h=2}\\{k=1}\end{array}}\right.$,
∴線段BH的長度為2.
(3)解:延長BA交EF于點(diǎn)M,
∵AE:BF=MA:MB=1:3,∴點(diǎn)A到平面EFCD的距離為點(diǎn)B到平面EFCD距離的$\frac{1}{3}$,
∴點(diǎn)A到平面EFCD的距離為$\frac{2}{3}$,而$AF=\sqrt{13}$,
∴直線AF與平面EFCD所成角的正弦值為$\frac{{2\sqrt{13}}}{39}$.

點(diǎn)評 本題考查直線與平面垂直的證明,考查線面角的大小的求法,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)$y=\sqrt{(x-1)(x-2)}+\sqrt{x-1}$的定義域?yàn)閧x︳x=1或x≥2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知點(diǎn)F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右焦點(diǎn),過點(diǎn)F且垂直于x軸的直線與雙曲線相交于A,B兩點(diǎn),若$\overrightarrow{EA}$•$\overrightarrow{EB}$>0,則該雙曲線的離心率e的取值范圍是(  )
A.($\sqrt{2}$,+∞)B.(1,$\sqrt{2}$+1)C.(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.下列四個圖象中,只有一個不是函數(shù)圖象,不是函數(shù)圖象的是圖二

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的半焦距為c,直線l過(c,0),(0,b)兩點(diǎn),若直線l與雙曲線的一條漸近線垂直,則雙曲線的離心率為(  )
A.$\frac{{\sqrt{5}-1}}{2}$B.$\frac{{\sqrt{5}+1}}{2}$C.$\sqrt{5}+1$D.$\sqrt{5}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知Sn是等差數(shù)列{an}的前n項和,a4+a6+a8=30,則S11=110.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓C:x2+(y-4)2=r2,直線l過點(diǎn)M(-2,0)
(Ⅰ)若圓C的半徑r=2,直線l與圓C相切,求直線l的方程;
(Ⅱ)若直線l的傾斜角α=135°,且直線l與圓C相交于A、B兩點(diǎn),弦長$|{AB}|=2\sqrt{2}$,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為(  )
A.-1B.1C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.解關(guān)于x的不等式ax2+2x-1>0(a為常數(shù)).

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 黄色一级毛片 | 二区在线视频 | 欧美一区二区三区免费 | 欧美日韩国产一区二区三区不卡 | 日本久久久久久 | 成人黄大片视频在线观看 | 91麻豆精品国产91久久久久 | 欧美成人一区二区 | 一级免费黄色免费片 | 牛牛影视成人午夜影视 | 久久区二区 | 99re6在线| 亚洲精品一区中文字幕乱码 | 久久国产久 | 久久精品欧美 | 精品国产乱码久久久久久1区2区 | 男女免费在线观看 | 99国产精品视频免费观看一公开 | 日本成人黄色 | 国产福利片在线观看 | 三级视频网站 | 黄色成人av | 国产精品久久久久免费a∨ 国产激情一区二区三区 | 欧美日韩在线观看中文字幕 | 91在线视频免费观看 | 伊人电影综合 | 天天干欧美 | 亚洲第一页中文字幕 | 青青草久草在线 | a在线观看| 国产精品白浆 | 日韩aⅴ一区二区三区 | 亚洲一区二区三区免费在线 | 欧日韩在线观看 | 日韩久久精品 | 免费一区二区三区 | 久久兔费看a级 | 伊人艹| 极品少妇xxxxⅹ另类 | 一级在线免费视频 | 久久国产成人午夜av影院宅 |