日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

1.過點(diǎn)P(2,1)作直線l分別與x,y軸正半軸交于A、B兩點(diǎn).
(1)當(dāng)△AOB面積最小時,求直線l的方程;
(2)當(dāng)|OA|+|OB|取最小值時,求直線l的方程.

分析 (1)設(shè)A(a,0),B(0,b)(a,b>0).直線l的方程為$\frac{x}{a}+\frac{y}{b}=1$,把點(diǎn)P(2,1)代入可得$\frac{2}{a}+\frac{1}{b}=1≥2\sqrt{\frac{2}{ab}}$,所以利用基本不等式即可得出.
(2)|OA|+|OB|=$a+b=(a+b)(\frac{2}{a}+\frac{1}{b}=1)=3+\frac{a}{b}+\frac{2b}{a}≥3+2\sqrt{2}$,即由基本不等式等號成立的條件可得直線的方程.

解答 解:設(shè)A(a,0),B(0,b)(a,b>0).
(1)設(shè)直線方程為$\frac{x}{a}+\frac{y}{b}=1$,
代入P(2,1)得$\frac{2}{a}+\frac{1}{b}=1≥2\sqrt{\frac{2}{ab}}$,
得ab≥8,從而${S_{△AOB}}=\frac{1}{2}ab≥4$,
此時$\frac{2}{a}=\frac{1}{b}$,$k=-\frac{b}{a}=-\frac{1}{2}$.
∴方程為x+2y-4=0.
(2)$a+b=(a+b)(\frac{2}{a}+\frac{1}{b}=1)=3+\frac{a}{b}+\frac{2b}{a}≥3+2\sqrt{2}$,
此時$\frac{a}{b}=\frac{2b}{a}$,$k=-\frac{b}{a}=-\frac{{\sqrt{2}}}{2}$.
∴方程為$x+\sqrt{2}y-2-\sqrt{2}=0$.

點(diǎn)評 本題考查直線的截距式方程,涉及基本不等式求最值,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在極坐標(biāo)系Ox中,曲線C1的方程為ρ=2sinθ,C2的方程為ρ=8sinθ,射線θ=$\frac{π}{3}$與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,過F且斜率為$\sqrt{3}$的直線交拋物線于A,B兩點(diǎn),若線段AB的垂直平分線與 x軸交于點(diǎn)M(11,0),則p=(  )
A.2B.3C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.定義行列式運(yùn)算$|{\begin{array}{l}{a_1}&{a_2}\\{{a_3}}&{a_4}\end{array}}|$=a1a4-a2a3.將函數(shù)f(x)=$|{\begin{array}{l}{sin2x}&{\sqrt{3}}\\{cos2x}&1\end{array}}|$的圖象向右平移$\frac{π}{6}$個單位后,所得函數(shù)圖象的一個對稱軸是(  )
A.x=$\frac{7π}{12}$B.x=$\frac{π}{2}$C.x=$\frac{5π}{12}$D.$x=\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知點(diǎn)P為圓x2+y2=25上任意一點(diǎn),過P作x軸的垂線,垂足為H,且滿足$\overrightarrow{MH}$=$\frac{3}{5}\overrightarrow{PH}$,若M的軌跡為曲線E.
(1)求h(x)=f(x)-g(x)的方程;
(2)設(shè)過曲線E左焦點(diǎn)的兩條弦為MN、PQ,弦MN,PQ所在直線的斜率分別為k1、k2,當(dāng)k1k2=1時,判斷$\frac{1}{|MN|}$+$\frac{1}{|PQ|}$是否為定值,若是,求出該定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在三角形△ABC中,角A,B,C所對的邊分別為a,b,c且A=60°,B=45°,c=20,則a=30$\sqrt{2}$-10$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},-1≤x≤1\\-x,x<-1或x>1\end{array}$,且函數(shù)g(x)=f(x)-kx+2k有三個不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.$-\frac{{\sqrt{3}}}{3}≤k≤0$B.$k≤-\frac{{\sqrt{3}}}{3}$或$k=-\frac{1}{3}$C.$-\frac{{\sqrt{3}}}{3}<K<-\frac{1}{3}$D.$-\frac{{\sqrt{3}}}{3}≤k≤-\frac{1}{3}$或k=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A到B的映射f:x→y=2x+1,那么集合A中元素2在B中對應(yīng)的元素是(  )
A.2B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=-2x2+1,則f(-1)=(  )
A.-3B.3C.-1D.1

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 成人爽a毛片一区二区免费 美女一级毛片 | 久久艹久久| 玖玖玖精品视频 | 亚洲国产精品麻豆 | 成人在线视频一区二区 | 国产精品视频一区二区三区四区国 | 特级毛片www| 精品黑人一区二区三区久久 | 国产偷录视频叫床高潮对白 | 久久久久国产精品 | 亚洲视频一区二区在线 | 久久视频精品 | 成人精品一区二区三区中文字幕 | 91精品久久久久久久久久 | 一区二区三区在线 | 欧 | 成人激情视频免费观看 | 激情视频网站 | 四虎精品成人免费网站 | 国产黄av| 国产乱a视频在线 | 丁香婷婷久久久综合精品国产 | 草久在线视频 | 国产精品久久久久久吹潮 | 鲁一鲁影院 | 久久99精品国产91久久来源 | 欧美一区二区三 | aaaa网站 | 国产干干干 | 欧美日韩亚洲国产 | 欧美精品一区二区三区在线四季 | 精品2区| 久久er99热精品一区二区 | 国产拍拍视频 | 成人五月网 | 日本在线观看 | 国产成人久久 | 国产精品不卡视频 | 91中文字幕 | 九九热这里 | 国产免费拔擦拔擦8x高清 | 午夜一区二区三区在线观看 |