分析 (1)利用二倍角和兩角和與差以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期;
(2)x∈$[{\frac{π}{2},π}]$上時(shí),求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的最大值和最小值即可.
解答 解:函數(shù)f(x)=cos2x-(sinx-cosx)2+1;
化簡(jiǎn)可得:f(x)=cos2x+2sinxcosx=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)
(1)∴f(x)的最小正周期T=$\frac{2π}{2}=π$.
(2)由x∈$[{\frac{π}{2},π}]$上時(shí),
可得:2x+$\frac{π}{4}$∈[$\frac{5π}{4}$,$\frac{9π}{4}$].
結(jié)合三角函數(shù)的圖象和性質(zhì),可知:當(dāng)2x+$\frac{π}{4}$=$\frac{3π}{2}$時(shí),f(x)取得最小值為$-\sqrt{2}$.
當(dāng)2x+$\frac{π}{4}$=$\frac{9π}{4}$時(shí),f(x)取得最大值為$\sqrt{2}×\frac{\sqrt{2}}{2}$=1.
故得f(x)在區(qū)間$[{\frac{π}{2},π}]$的最大值為1,最小值為$-\sqrt{2}$.
點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2013 | B. | -2014 | C. | 2013 | D. | 2014 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com