分析 直線$l:\left\{\begin{array}{l}x=\frac{3}{5}t\\ y=\frac{4}{5}t\end{array}\right.(t$為參數)化為普通方程,圓C的極坐標方程ρ=2cosθ化為直角坐標方程,求出圓C的圓心到直線l的距離,即可求弦AB的長.
解答 解:直線$l:\left\{\begin{array}{l}x=\frac{3}{5}t\\ y=\frac{4}{5}t\end{array}\right.(t$為參數)化為普通方程為4x-3y=0,…(2分)
圓C的極坐標方程ρ=2cosθ化為直角坐標方程為(x-1)2+y2=1,…(4分)
則圓C的圓心到直線l的距離為$d=\frac{|4|}{{\sqrt{{4^2}+{{({-3})}^2}}}}=\frac{4}{5}$,…(6分)
所以$AB=2\sqrt{1-{d^2}}=\frac{6}{5}$.…(10分)
點評 本題考查參數方程、普通方程、極坐標方程的轉化,考查點到直線的距離公式,考查學生的計算能力,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{3}$ | C. | 1 | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com